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ABSTRACT

Different neural network architectures, hyperparameters and training protocols lead
to different performances as a function of time. Human experts routinely inspect
the resulting learning curves to quickly terminate runs with poor hyperparameter
settings and thereby considerably speed up manual hyperparameter optimization.
The same information can be exploited in automatic hyperparameter optimization
by means of a probabilistic model of learning curves across hyperparameter settings.
Here, we study the use of Bayesian neural networks for this purpose and improve
their performance by a specialized learning curve layer.

1 INTRODUCTION

Deep learning has celebrated many successes, but its performance relies crucially on good hyperpa-
rameter settings. Bayesian optimization (e.g, Brochu et al. (2010); Snoek et al. (2012); Shahriari et al.
(2016)) is a powerful method for optimizing the hyperparameters of deep neural networks (DNNs).
However, its traditional treatment of DNN performance as a black box poses fundamental limitations
for large and computationally expensive data sets, for which training a single model can take weeks.
Human experts go beyond this blackbox notion in their manual tuning and exploit cheaper signals
about which hyperparameter settings work well: they estimate overall performance based on runs
using subsets of the data or initial short runs to weed out bad parameter settings; armed with these
tricks, human experts can often outperform Bayesian optimization.

Recent extensions of Bayesian optimization and multi-armed bandits therefore also drop the limiting
blackbox assumption and exploit the performance of short runs (Swersky et al., 2014; Domhan et al.,
2015; Li et al., 2017), performance on small subsets of the data (Klein et al., 2017), and performance
on other, related data sets (Swersky et al., 2013; Feurer et al., 2015).

While traditional solutions for scalable Bayesian optimization include approximate Gaussian process
models (e.g., Hutter et al.; Swersky et al. (2014)) and random forests (Hutter et al., 2011), a recent
trend is to exploit the flexible model class of neural networks for this purpose (Snoek et al., 2015;
Springenberg et al., 2016). In this paper, we study this model class for the prediction of learning
curves. Our contributions in this paper are:

1. We study how well Bayesian neural networks can fit learning curves for various architectures
and hyperparameter settings, and how reliable their uncertainty estimates are.

2. Building on the parametric learning curve models of Domhan et al. (2015), we develop a
specialized neural network architecture with a learning curve layer that improves learning
curve predictions.

3. We compare different ways to generate Bayesian neural networks: probabilistic back
propagation (Hernández-Lobato and Adams, 2015) and two different stochastic gradient
based Markov Chain Monte Carlo (MCMC) methods – stochastic gradient Langevin dy-
namics (SGLD (Welling and Teh, 2011)) and stochastic gradient Hamiltonian MCMC
(SGHMC (Chen et al., 2014)) – for standard Bayesian neural networks and our specialized
architecture and show that SGHMC yields better uncertainty estimates.
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4. We evaluate the predictive quality for both completely new learning curves and for extrapo-
lating partially-observed curves, showing better performance than the parametric function
approach by Domhan et al. (2015) at stages were learning curves have not yet converged.

5. We extend the recent multi-armed bandit strategy Hyperband (Li et al., 2017) by sampling
using our model rather than uniformly at random, thereby enabling it to approach near-
optimal configurations faster than traditional Bayesian optimization.

Figure 1: Example learning curves of random hyperparameter configurations of 4 different iterative
machine learning methods: convolutional neural network (CNN), fully connected neural network
(FCNet), logistic regression (LR), and variational auto-encoder (VAE). Although different configura-
tions lead to different learning curves, they usually share some characteristics for a certain algorithm
and dataset (but vary across these).

2 PROBABILISTIC PREDICTION OF LEARNING CURVES

In this section, we describe a general framework to model learning curves of iterative machine
learning methods. We first describe the approach by Domhan et al. (2015) which we will dub LC-
Extrapolation from here on. Afterwards, we discuss a more general joint model across time steps and
hyperparameter values that can exploit similarities between hyperparameter configurations and predict
for unobserved learning curves. We also study the observation noise of different hyperparameter
configurations and show how we can adapt our model to capture this noise.

2.1 LEARNING CURVE PREDICTION WITH BASIS FUNCTION

An intuitive model for learning curves proposed by Domhan et al. (2015) uses a set of k different
parametric functions φi(θi, t) ∈ {φ1(θ1, t), ..., φk(θk, t)} to extrapolate learning curves (y1, . . . , yn)
from the first n time steps. Each parametric function φi depends on a time step t ∈ [1, T ] and on a
parameter vector θi. The individual functions are combined into a single model by a weighted linear
combination

f̂(t|Θ,w) =

k∑

i=1

wiφi(t,θi) , (1)
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where Θ = (θ1, . . . ,θk) denotes the combined vector of all parameters θ1, . . . ,θk, and w =
(w1, . . . , wk) is the concatenated vector of the respective weights of each function. Assuming
observation noise around the true but unknown value f(t), i.e., assuming yt ∼ N (f̂(t|Θ,w), σ2),
Domhan et al. (2015) define a prior for all parameters P (Θ,w, σ2) and use a gradient-free MCMC
method (Foreman-Mackey et al., 2013) to obtain S samples, (Θ1,w1, σ

2
1), . . . , (ΘS ,wS , σ

2
S), from

the posterior

P (Θ,w, σ2|y1 . . . , yn) ∝ P (y1, . . . , yn|Θ,w, σ2)P (Θ,w, σ2) (2)

using the likelihood

P (y1, . . . , yn|Θ,w, σ2) =

n∏

t=1

N (yt; f̂(t|Θ,w), σ2) . (3)

These samples then yield probabilistic extrapolations of the learning curve for future time steps m,
with mean and variance predictions

ŷm = E[ym|y1, . . . yn] ≈ 1

S

S∑

s=1

f̂(m|Θs,ws) , and

var(ŷm) ≈ 1

S

S∑

s=1

(f̂(m|Θs,ws)− ŷm)2 +

S∑

s=1

σ2
s .

(4)

For our experiments, we use the original implementation by Domhan et al. (2015) with one mod-
ification: the original code included a term in the likelihood that enforced the prediction at t = T
to be strictly greater than the last value of that particular curve. This biases the estimation to never
underestimate the accuracy at the asymptote. We found that in some of our benchmarks, this led to
instabilities, especially with very noisy learning curves. Removing it cured that problem, and we did
not observe any performance degradation on any of the other benchmarks.

The ability to include arbitrary parametric functions makes this model very flexible, and Domhan
et al. (2015) used it successfully to terminate evaluations of poorly-performing hyperparameters early
for various different architectures of neural networks (thereby speeding up Bayesian optimization by
a factor of two). However, the model’s major disadvantage is that it does not use previously evaluated
hyperparameters at all and therefore can only make useful predictions after observing a substantial
initial fraction of the learning curve.

2.2 LEARNING CURVE PREDICTION WITH BAYESIAN NEURAL NETWORKS

In practice, similar hyperparameter configurations often lead to similar learning curves, and modelling
this dependence would allow predicting learning curves for new configurations without the need
to observe their initial performance. Swersky et al. (2014) followed this approach based on an
approximate Gaussian process model. Their Freeze-Thaw method showed promising results for
finding good hyperparameters of iterative machine learning algorithms using learning curve prediction
to allocate most resources for well-performing configurations during the optimization. The method
introduces a special covariance function corresponding to exponentially decaying functions to model
the learning curves. This results in an analytically tractable model, but using different functions to
account for cases where the learning curves do not converge exponentially is not trivial.

Here, we formulate the problem using Bayesian neural networks. We aim to model the val-
idation accuracy g(x, t) of a configuration x ∈ X ⊂ Rd at time step t ∈ (0, 1] based
on noisy observations y(x, t) ∼ N (g(x, t), σ2). For each configuration x trained for Tx
time steps, we obtain Tx data points for our model; denoting the combined data by D =
{(x1, t1, y11)), (x1, t2, y12), . . . , (xn, Txn , ynTxn

)} we can then write the joint probability of the
data D and the network weights W as

P (D,W ) = P (W )P (σ2)

|D|∏

i=1

N (yi; ĝ(xi, ti|W ), σ2) . (5)

where ĝ(xi, ti|W ) is the prediction of a neural network. It is intractable to compute the posterior
weight distribution p(W |D), but we can use MCMC to sample it, in particular stochastic gradient
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MCMC methods, such as SGLD (Welling and Teh, 2011) or SGHMC (Chen et al., 2014). Given
M samples W 1, . . . ,WM , we can then obtain the mean and variance of the predictive distribution
p(g|x, t,D) as

µ̂(x, t|D) =
1

M

M∑

i=1

ĝ(x, t|W i) , and

σ̂2(x, t|D) =
1

M

M∑

i=1

(
ĝ(x, t|W i)− µ̂(x, t|D)

)2
,

(6)

respectively. We will write these shorthand as µ̂(x, t) and σ̂2(x, t). This is similar to Eqs. 4 and
exactly the model that Springenberg et al. (2016) used for (blackbox) Bayesian optimization with
Bayesian neural networks; the only difference is in the input to the model: here, there is a data point
for every time step of the curve, whereas Springenberg et al. (2016) only used a single data point per
curve (for its final time step).

Figure 2: Example functions generated with our k = 5 basis functions (formulas for which are given
in Appendix B). For each function, we drew 50 different parameters θi uniformly at random in the
output domain of the hidden layer(s) of our model. This illustrates the type of functions used to
model the learning curves.

2.3 HETEROSCEDASTIC NOISE OF HYPERPARAMETER CONFIGURATION

In the model described above, we assume homoscedastic noise across hyperparameter configurations.
To evaluate how realistic this assumption is, we sampled 40 configurations of a fully connected
network (see Section 3.1 for a more detailed description of how the data was generated and Table
2 for the list of hyperparameters) and evaluated each configuration R = 10 times with different
pseudorandom number seeds (see the right panel of Figure 3 for some examples). Figure 3 (left)
shows on the vertical axis the noise σ̄2(x, t) = 1

R

∑R
r=1(y(x, t)− µ̄(x, t))2 and on the horizontal

axis the rank of each configuration based on their asymptotic sample mean performance µ̄(x, t =

1) = 1
R

∑R
r=1 y(x, t = 1).

Figure 3: On the left, we plot the noise estimate of 40 different configurations on the FCNet
benchmark sorted by their asymptotic mean performance at t = 1. The color indicates the time step t,
darker meaning a larger value. On the right, we show the learning curves of 5 different configurations
each evaluated 10 times (indicated with the same color) with a different seed.

Maybe not surprisingly, the noise seems to correlate with the asymptotic performance of a configura-
tion. The fact that the noise between different configurations varies on different orders of magnitudes
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suggests a heteroscedastic noise model to best describe this behavior. We incorporate this observation
by making the noise dependent on the input data to allow to predict different noise levels for different
hyperparameters. In principle, one could also model a t dependent noise, but we could not find the
same trend across different datasets.

2.4 NEW BASIS FUNCTION LAYER FOR LEARNING CURVE PREDICTION WITH BAYESIAN
NEURAL NETWORKS

x1 x2 x3 x4 xd· · ·
hidden layer(s)

µ̂∞ φ1 . . . φk

basis
function
layer

θ1 · · · θkt

w1 · · ·wk

µ̂ = µ̂∞ +
∑k

i=0 wiφi σ̂2

Figure 4: Our neural network architecture to
model learning curves. A common hidden layer
is used to simultaneously model µ̂∞, the param-
eters Θ of the basis functions, their respective
weights w, and the noise σ̂2.

We now combine Bayesian neural networks with
the parametric functions to incorporate more
knowledge about learning curves into the net-
work itself. Instead of obtaining the parameters
Θ and w by sampling from the posterior, we use
a Bayesian neural network to learn several map-
pings simultaneously:

1. µ̂∞: X → R, the asymptotic value of
the learning curve

2. Θ: X → RK , the parameters of a para-
metric function model (see Figure 2 for
some example curves from our basis
functions)

3. w: X → Rk, the corresponding weights
for each function in the model

4. σ̂2: X → R+, the observational noise
for this hyperparameter configuration

With these quantities, we can compute the likeli-
hood in (3) which allows training the network.

Phrased differently, we use a neural network to
predict the model parameters Θ and weightsw of
our parametric functions, yielding the following
form for our network’s mean predictions:

ĝ(xi, ti|W ) = f̂(ti|Θ(xi,W ),w(xi,W )). (7)

A schematic of this is shown in Fig. 4. For training, we will use the same MCMC methods, namely
SGLD and SGHMC mentioned above.

3 EXPERIMENTS

We now empirically evaluate the predictive performance of Bayesian neural networks, with and
without our special learning curve layer. For both networks, we used a 3-layer architecture with tanh
activations and 64 units per layer. We also evaluate two different sampling methods for both types
of networks: stochastic gradient Langevin dynamics (SGLD) and stochastic gradient Hamiltonian
MCMC (SGHMC), following the approach of Springenberg et al. (2016) to automatically adapt the
noise estimate and the preconditioning of the gradients.

As baselines, we compare to other approaches suitable for this task. Besides the aforementioned work
by Domhan et al. (2015), we also compare against random forests Breimann (2001) with empirical
variance estimates (Hutter et al., 2014), a Gaussian process (GP) using the learning curve kernel
from Swersky et al. (2014), another Bayesian neural network technique called probabilistic back
propagation (PBP) (Hernández-Lobato and Adams, 2015), and the simple heuristic of using the
last seen value (LastSeenValue) of each learning curve for extrapolation. The last model has been
successfully used by Li et al. (2017) despite its simplicity.
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Figure 5: Qualitative comparison of the different models. The left panel shows the mean predictions
of different methods on the CNN benchmark. All models observed the validation error of the first 12
epochs of the true learning curve (black). On the right, the posterior distributions over the value at 40
epochs is plotted.

3.1 DATASETS

For our empirical evaluation, we generated the following four datasets of learning curves, in each
case sampling hyperparameter configurations at random from the hyperparameter spaces detailed in
Table 2 in the appendix (see also Section D for some characteristic of these datasets):

• CNN: We sampled 256 configurations of 5 different hyperparameters of a 3-layer convo-
lutional neural network (CNN) and trained each of them for 40 epochs on the CIFAR10
(Krizhevsky, 2009) benchmark.
• FCNet: We sampled 4096 configurations of 10 hyperparameters of a 2-layer feed forward

neural network (FCNet) on MNIST (LeCun et al., 2001), with batch normalization, dropout
and ReLU activation functions, annealing the learning rate over time according to a power
function. We trained the neural network for 100 epochs.
• LR: We sampled 1024 configurations of the 4 hyperparameters of logistic regression (LR)

and also trained it for 100 epochs on MNIST.
• VAE: We sampled 1024 configuration of the 4 hyperparameters of a variational auto-

encoder (VAE) (Kingma and Welling, 2014). We trained the VAE on MNIST, optimizing
the approximation of the lower bound for 300 epochs.

3.2 PREDICTING ASYMPTOTIC VALUES OF PARTIALLY OBSERVED CURVES

We first study the problem of predicting the asymptotic values of partially-observed learning curves
tackled by Domhan et al. (2015). The LC-Extrapolation method by Domhan et al. (2015), the GP,
and the last seen value work on individual learning curves and do not allow to model performance
across hyperparameter configurations. Thus, we trained them separately on individual partial learning
curves. The other models, including our Bayesian neural networks, on the other hand, can use training
data from different hyperparameter configurations. Here, we used training data with the same number
of epochs for every partial learning curve.1

The left panel of Figure 5 visualizes the extrapolation task, showing a learning curve from the CNN
dataset and the prediction of the various models trained only using the first 12 of 40 epochs of the
learning curve. The right panel shows the corresponding predictive distributions obtained with these
models. LastSeenValue does not yield a distribution and uncertainties are not defined.

For a more quantitative evaluation, we used all models to predict the asymptotic value of all learning
curves, evaluating predictions based on observing between 10% and 90% of the learning curves.

1We note that when used inside Bayesian optimization, we would have access to a mix of fully-converged and
partially-converged learning curves as training data, and could therefore expect better extrapolation performance.

6



Published as a conference paper at ICLR 2017

Method CNN FCNet LR VAE
MSE ·102 ALL MSE·102 ALL MSE·102 ALL MSE ·104 ALL

SGLD 1.8± 0.9 0.60± 0.25 4.5± 0.6 0.13± 0.05 1.1± 0.3 0.77± 0.08 4.7± 1.7 2.16± 0.07
SGLD-LC 1.4± 0.9 1.09± 0.22 3.3± 0.7 0.54± 0.06 1.3± 0.7 0.94± 0.09 3.1± 1.1 1.55± 0.01
SGHMC 0.8± 0.6 0.96± 0.15 1.9± 0.3 0.50± 0.04 0.5± 0.2 1.08± 0.05 3.6± 1.5 2.34± 0.07
SGHMC-LC 0.7± 0.6 1.15± 0.34 2.0± 0.3 0.80± 0.05 0.5± 0.2 1.17± 0.08 1.9± 1.1 1.39± 0.65

Table 1: In each column we report the mean squared error (MSE) and the average log-likelihood
(ALL) of the 16 fold CV learning curve prediction for a neural network without learning curve
prediction layer (SGLD and SGHMC) and with our new layer (SGLD-LC and SGHMC-LC).

Figure 6 shows the mean squared error between the true asymptotic value and the models’ predictions
(left) and the average log-likelihood of the true value given each model as a function of how much
of the learning curves has been observed. Note that we removed some methods from the plots to
avoid clutter; the same plots with all methods can be found in the supplementary material. We notice
several patterns:

1. Throughout, our specialized network architecture performs better than the standard Bayesian
neural networks, and SGHMC outperformed SGLD (see Appendix C).

2. PBP shows mixed results for the extrapolated mean, and does not provide reliable uncer-
tainties (also see Appendix C). We hypothesize that this may be due to its linear activation
functions.

3. If no uncertainties are required, LastSeenValue is hard to beat. This is because many
configurations approach their final performance quite quickly.

4. The GP mean predictions are very competitive, but the average log-likelihood indicates
overconfidence, especially for short learning curves. We assume that the prior assumption
of an exponential function is not flexible enough in practice and that after observing some
data points the Gaussian process becomes too certain of its predictions.

5. The random forest’s mean predictions almost match the quality of the GP. The uncertainty
estimates are better, but still too aggressive when only a small fraction of the learning curve
was observed. Random forests do not extrapolate and similar to LastSeenValue also achieve
a very good mean prediction if the learning curve has almost converged.

6. Local models for single curves clearly outperform global models for almost complete
learning curves. Global models, like our BNN approach, on the other hand, are trained
on many configurations and need to generalize across these, yielding somewhat worse
performance for this (arguably easy) task.2

3.3 PREDICTING UNOBSERVED LEARNING CURVES

As mentioned before, training a joint model across hyperparameters and time steps allows us to make
predictions for completely unobserved learning curves of new configurations. To estimate how well
Bayesian neural networks perform in this task, we used the datasets from Section 3.1 and split all
of them into 16 folds, allowing us to perform cross-validation of the predictive performance. For
each fold, we trained all models on the full learning curves in the training set and let them predict the
held-out learning curves.

Table 1 shows the mean squared error and the average log-likelihood (both computed for all points
in each learning curve) across the 16 folds. We make two observations: firstly, both neural network
architectures lead to a reasonable mean squared error and average log-likelihood, for both SGLD and
SGHMC. Except on the VAE dataset our learning curve layer seems to improve mean squared error
and average log likelihood. Secondly, SGHMC performed better than SGLD, with the latter resulting
in predictions with too small variances. Figure 7 visualizes the results for our CNN dataset in more
detail, showing that true and predicted accuracies correlate quite strongly.

2In the future, we aim to improve our BNN architecture for this case of partially-observed learning curves by
also giving the network access to the partial learning curve it should extrapolate.
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Figure 6: Assessment of the predictive quality based on partially observed learning curves on all 4
benchmarks. The panels on the left show the mean squared error of the predicted asymptotic value
(y-axis) after observing all learning curves up to a given fraction of maximum number of epochs
(x-axis). The panels on the right show the average log-likelihood based on the predictive mean and
variance of the asymptotic value. Note that LastSeenValue does not provide a predictive variance.
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Figure 7: On the horizontal axis, we plot the true value and on the vertical axis the predicted values.
Each point is colored by its log-likelihood (the brighter the higher). Our learning curve BNN trained
with SGHMC leads to the best mean predictions and assigns the highest likelihood to the test points.

3.4 MODEL-BASED HYPERBAND

In this section, we show how our model can be used to improve hyperparameter optimization
of iterative machine learning algorithms. For this, we extended the multi-armed bandit strategy
Hyperband (Li et al., 2017), which in each iteration i first samples Ni hyperparameter configurations
C = {x1, . . . ,xNi

} and then uses successive halving (Jamieson and Talwalkar, 2016) to iteratively
discard poorly-performing configurations from C. While the original Hyperband method samples
configurations C from a uniform distribution U over hyperparameter configurations, our extension
instead samples them based on our model, with all other parts remaining unchanged. More precisely,
we sample Mi >> Ni configurations uniformly, Ĉ = {x1, . . . ,xMi} ∼ U , and pick the Ni
configurations with the highest predicted asymptotic mean a(x) = µ̂(x, t = 1) or upper confidence
value a(x) = µ̂(x, t = 1) + σ̂(x, t = 1).

For a thorough empirical evaluation and to reduce computational requirements we reused the data
from Section 3.1 to construct a surrogate benchmark based on a random forest (see Appendix E for
more details). After each iteration we report the final performance of the best observed configuration
so far, along with the wall clock time that would have been needed for optimizing the true objective
function. Reporting the (predicted) wall clock time (rather than the number of iterations) also takes
our optimizer’s overhead into account. This is important since one may worry that this overhead may
be substantial due to our use of a model; however, as we show it does not harm performance.

Figure 8: Comparison of Hyperband, Hyperband with our model, and standard Bayesian optimization
on the CNN benchmark. Hyperband finds a good configuration faster than standard Bayesian
optimization, but it only approaches the global optimum quickly when extended with our model.
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Figure 8 shows the immediate regret on the CNN benchmark as a function of wallclock time, for
three optimizers: Hyperband, our model-based extension of Hyperband, as well as standard Bayesian
optimization with a Gaussian process (a comparison to additional baselines can be found in Appendix
E). Standard Bayesian optimization does not make use of learning curves and thus needs to evaluate
each configuration for the full amount of epochs. Nevertheless, since training one configuration to
the end takes less time than one round of successive halving, Bayesian optimization produces its
first results earlier than Hyperband. In accordance with results by Li et al. (2017), in this experiment
Hyperband found a configuration with good performance faster than standard Bayesian optimization,
but its random sampling did not suffice to quickly approach the best configuration; given enough time
Bayesian optimization performed better. However, extended by our model, Hyperband both found a
good configuration fast and approached the global optimum fastest.

We would like to emphasize that our model-based extension of Hyperband is not limited to our
particular Bayesian neural networks as the underlying model. Since Hyperband stops the majority
of the configurations very early, the setting is quite similar to that of very short partially observed
learning curves in Section 3.2, with the differences that some configurations have been evaluated
for longer and that the model now has to generalize to unseen configurations. For example, for
the CNN and LR benchmarks, the experiments in Section 3.2 showed that random forests achieve
strong average log-likelihoods for very short partial learning curves, and we would therefore also
expect them to work well when combined with Hyperband. However, given our model’s more robust
likelihoods and mean squared error values we believe it to be less sensitive to the underlying data.
Additionally, we can incorporate more prior knowledge about the general shape of the curves into our
model, something that is not easily done for many other model classes.

4 CONCLUSION

We studied Bayesian neural networks for modelling the learning curves of iterative machine learning
methods, such as stochastic gradient descent for convolutional neural networks. Based on the
parametric learning curve models of Domhan et al. (2015), we also developed a specialized neural
network architecture with a learning curve layer that improves learning curve predictions. In future
work, we aim to study recurrent neural networks for predicting learning curves and will extend
Bayesian optimization methods with Bayesian neural networks (Springenberg et al., 2016) based on
our learning curve models.
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A EXPERIMENTAL SETUP – DETAILS

Table 2 shows the hyperparameters of our 4 benchmarks described in Section 3.1 and their ranges.

Name Range log scale

CNN

batch size [32, 512] -
number of units layer 1 [24, 210] X
number of units layer 2 [24, 210] X
number of units layer 3 [24, 210] X
learning rate [10−6, 10−0] X

FCNet

initial learning rate [10−6, 100] X
L2 regularization [10−8, 10−1] X
batch size [32, 512] -
γ [−3,−1] -
κ [0, 1] -
momentum [0.3, 0.999] -
number units 1 [25, 122] X
number units 2 [25, 212] X
dropout rate layer 1 [0.0, 0.99] -
dropout rate layer 2 [0.0, 0.99] -

LR

learning rate [10−6, 100] X
L2 [0.0, 1.0] -
batch size [20, 2000] -
dropout rate on inputs [0.0, 0.75] -

VAE

L [1, 3] -
number of hidden units [32, 2048] -
batch size [16, 512] -
z dimension [2, 200] -

Table 2: Hyperparameter configuration space of the four different iterative methods. For the FCNet
we decayed the learning rate by a αdecay = (1 + γ ∗ t)−κ and also sampled different values for γ
and κ.

B DESCRIPTION OF THE BASIS FUNCTIONS

To reduce complexity, we used a subset of the basis function from Domhan et al. (2015) which we
found to be sufficient for learning curve prediction. We adapted these functions to model the residual
between the asymptotic value y∞ and we scaled the parameters Θ to be in [0, 1]. Table 3 shows the
exact equations we used.

C PREDICTING ASYMPTOTIC VALUES OF PARTIALLY OBSERVED CURVES

Figure 9 shows the mean squared error and the average log-likelihood of predicting the asymptotic
value after observing different amounts of the learning curve for all methods. See Section 3.2 in the
main text for more details.

D DATASET CHARACTERISTICS

Figure 10 shows the distributions over runtimes for all random configurations of different benchmarks.
As it can be seen there is a high variance of the runtime between different configurations for all
benchmarks and some configurations need order of magnitudes longer than others.
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Figure 9: Assessment of the predictive quality based on partially observed learning curves on all 4
benchmarks. The panels on the left show the mean squared error of the predicted asymptotic value
(y-axis) after observing all learning curves up to a given fraction of maximum number of epochs
(x-axis). The panels on the right show the average log-likelihood based on the predictive mean and
variance of the asymptotic value.
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Name Formula

vapor pressure φ(t, a, b, c) = e−a−0.1·b·t
−1−0.1·c·log(t) − e−a−0.1·b

pow φ(t, a, b) = a · (tb − 1)

log power φ(t, a, b, c) = 2a ·
[(

1 + e−0.1·b·c
)−1 −

(
1 + ec·(log(t)−0.1·b)

)−1]

exponential φ(t, a, b) = a ·
[
e−10·b − e−10·b·t

]

hill-3 φ(t, a, b, c) = a ·
[(
cb · t−b + 1

)−1 −
(
cb + 1

)−1]

Table 3: The formulas of our 5 basis functions.

Figure 11 shows the empirical cumulative distribution of the asymptotic performance of random
configurations. These plots give an intuition about the difficulty of a benchmark as they show how
many random configurations one has to sample in order to achieve a good performance.

E OPTIMIZATION ON SURROGATE BENCHMARKS

We follow the approach by Eggensperger et al. (2015) and used the generated datasets from Section
3.1 to build surrogates of the objective functions. This allows us to compare different optimizers on
this benchmark very efficiently while (approximately) preserving the characteristics of the underlying
benchmark. Using surrogates instead of optimizing the real benchmarks allows us to carry out a
more thorough empirical evaluation (since single function evaluations are cheap and we therefore
can afford more and longer optimization runs). We used random forests as surrogates following
Eggensperger et al. (2015) since they do not introduce a bias for our approach (in contrast to, e.g.,
surrogates based on standard feed forward neural networks trained with stochastic gradient descent ).
For each benchmark, we used all configurations to train a random forest predicting the validation
accuracy of a configuration at a certain time step as well as the wall clock time for its evaluation.

After each round of successive halving, we return the current best observed configuration and its
asymptotic performance. For each function evaluation, we predict the accuracy, and the runtime. By
adding the optimization overhead, we can predict the wallclock time necessary to optimize the real
objective function. Reporting the wallclock time rather than the number of iterations also takes the
additional overhead from running our method into account. Furthermore, we argue that the wallclock
time is more interesting in practice.

As baselines, we compare to Gaussian process based Bayesian optimization with the upper confidence
bound acquisition function (GP-BO-UCB) and the (log) expected improvement acquisition function
(GP-BO-Log-EI), as well as Bayesian optimization with Bayesian neural networks (BOHAMIANN)
(Springenberg et al., 2016). As an additional baseline, we use standard Bayesian neural networks
(SGHMC-BNN) inside Hyperband instead of our specialized neural network architecture (SGHMC-
LCNet). We compare our model-based version of Hyperband against all these baselines with
sampling from the asymptotic mean (SGHMC-LCNet-mean-sampling) and the asymptotic upper
confidence bound (SGHMC-LCNet-ucb-sampling). Figure 12 shows that our specialized neural
network architecture helps to speed up the convergence of Hyperband on the CNN and the FCNet
benchmark. For the LR benchmarks our model still improves over Hyperband but does not perform
better than Bayesian optimization. Hyperband as well as our method find the optimum already after
the first round of successive halving for the VAE benchmark, which leads to an regret of 0.

14



Published as a conference paper at ICLR 2017

Figure 10: Distributions over runtimes for different random configurations for the CNN, FCNet, LR
and VAE benchmark described in Section 3.One can see that all distributions are long tailed and that
especially on the FCNet benchmark some configuration need order of magnitudes longer than others.

Figure 11: Empirical cumulative distributions for the CNN, FCNet, LR and VAE benchmark.
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Figure 12: Different optimizers on a random forests based suggorate of all collected learning curves
on different benchmarks. Note how sampling from the model improves Hyperband’s performance by
converging to the optimum faster.
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