
Temporal Planning as Refinement-Based Model Checking:
Proofs and Additional Descriptions

Alexander Heinz,1 Martin Wehrle,2 Sergiy Bogomolov,3
Daniele Magazzeni,4 Marius Greitschus,1 Andreas Podelski1

1University of Freiburg, Germany, 2University of Basel, Switzerland,
3Australian National University, Australia, 4King’s College London, UK

h.alexander2@gmail.com, sergiy.bogomolov@anu.edu.au, daniele.magazzeni@kcl.ac.uk,
greitsch@informatik.uni-freiburg.de, podelski@informatik.uni-freiburg.de

Abstract

Planning as model checking based on source-to-source com-
pilations has found increasing attention. Previously proposed
approaches for temporal and hybrid planning are based on
static translations, in the sense that the resulting model check-
ing problems are uniquely defined by the given input plan-
ning problems. As a drawback, the translations can become
too large to be efficiently solvable. In this paper, we address
propositional temporal planning, lifting static translations to
a more flexible framework. Our framework is based on a re-
finement cycle that allows for adaptively computing suitable
translations of increasing size. Our experiments on temporal
IPC domains show that the resulting translations to timed au-
tomata often become succinct, resulting in promising perfor-
mance when applied with the directed model checker MCTA.

1 Introduction
Planning as model checking is a well-established approach
that has been investigated in many contexts to solving
planning problems of different forms (Cimatti et al. 1997;
Edelkamp and Helmert 2001; Dierks, Behrmann, and Larsen
2002; Della Penna et al. 2009; Bogomolov et al. 2014a;
2015; Bryce et al. 2015). In particular, planning as model
checking based on source-to-source compilations of the
planning problem has been considered (Dierks, Behrmann,
and Larsen 2002; Bogomolov et al. 2014a; 2015). In the lat-
ter approach, the given planning problem is translated to a
corresponding model checking problem, such that a model
checking tool can be applied “out-of-the-box” to solve the
translated problem. The resulting trace in the model check-
ing problem in turn corresponds to a plan, or an overapprox-
imation thereof, in the original planning problem. This idea
has been applied both to hybrid planning and for proving
unsolvability of hybrid planning problems (Bogomolov et
al. 2014a; 2015) as well as to temporal planning (Dierks,
Behrmann, and Larsen 2002), by translating the input plan-
ning problem to hybrid and to timed automata, respectively.

To the best of our knowledge, all existing source-to-
source compilation approaches for planning rely on a static
translation, i. e., on a fixed translation given the input plan-
ning problem. While these translations have shown their po-
tential, a common problem with this approach is the size

of the resulting translation, which usually grows quickly
for realistic planning problems. In particular, for every au-
tomaton in the translation, a separate continuous (i. e., real-
valued) clock variable is introduced in general, which is
supposed to measure the time the automata are running.
These additional clock variables can represent a severe bot-
tleneck, because the efficiency of timed automata model
checkers like UPPAAL (Behrmann, David, and Larsen 2004;
Behrmann et al. 2006) or MCTA (Kupferschmid et al. 2008;
Wehrle and Kupferschmid 2012) crucially depends on the
number of clocks in the model. This is because, apart from
being an additional source of the state explosion problem,
the additional clocks also cause a significant increase in
the representation size of the states. In particular, timed au-
tomata model checkers typically use symbolic representa-
tions of clock values (Dill 1989) which grow quadratically
in the number of the clocks. While polynomial, in realis-
tic planning problems with potentially thousands of actions
(and hence, thousands of additional clocks), the clock vari-
ables can cause a significant restriction in practice.

In this paper, we address temporal planning as model
checking based on source-to-source transformations. Tem-
poral planning is a challenging area, for which many ap-
proaches have been proposed (Vidal and Geffner 2004;
Eyerich, Mattmüller, and Röger 2009; Coles et al. 2010;
2011; Gerevini, Saetti, and Serina 2010; Vidal 2014; Wang
and Williams 2015; Rankooh and Ghassem-Sani 2015). To
the best of our knowledge, the only attempt to translate tem-
poral planning to automata-based model checking is a (non-
archival) workshop paper by Dierks et al. (2002), which stat-
ically translates temporal planning problems to networks of
timed automata. In their evaluation, they report on results
in one (non-IPC) domain and for three instances, indicat-
ing that the scaling capability is limited. To account for this,
Dierks et al. state as future work to investigate alternative
timed automata encodings to render the approach competi-
tive. Still, again to the best of our knowledge, the authors did
not follow up this direction since then.

We show that the time is ripe to make the “planning as
model checking” paradigm for temporal planning work in
practice. As a central generalization to previous approaches,
we move from static to dynamic encodings in order to tackle

the problem of (too) large translations. Our dynamic en-
codings are computed based on refinement cycles, which
compute translations adaptively based on the input plan-
ning problem. For the evaluation, we apply directed model
checking on the translated model checking problem, based
on the model checker MCTA (Kupferschmid et al. 2008;
Wehrle and Kupferschmid 2012). The experiments show
promising performance on common temporal IPC domains.

2 Preliminaries
We consider propositional temporal planning with PDDL
2.1 at level 3 (Fox and Long 2003). For a set P of proposi-
tions and a real-valued time variable t, a state is a valuation
of the propositions in P , together with a value from the real
numbers assigned to t. The value of p ∈ P and time variable
t in state s is denoted by s[p] and s[t], respectively.

Definition 1 (Planning Task). A planning task is a tuple
Π = (P ,A, s0, G), where P is a finite set of propositions, A
is a finite set of (durative) actions, s0 is the initial state with
s0[t] = 0, and G the goal specification.

We consider durative actions a that have a non-zero (but
fixed) duration dur(a). Furthermore, a has three sets of
preconditions, representing the propositions that must hold
when a starts (denoted by pre`), the propositional invari-
ant pre↔ that must hold throughout a’s execution, and the
conditions prea that must hold at a’s end. Similarly, a has
three sets of effects: effects that are applied when the action
starts (eff+` and eff−` , denoting propositions that are added
and deleted, respectively), and effects that are applied at a’s
end (denoted by eff+a and eff−a).

2.1 Timed Automata
Timed automata are introduced by Alur and Dill (1994),
representing finite state automata extended with real-valued
clock variables. Clock variables x are real-valued, and obey
the differential equation ẋ = 1 to represent the increase of
time. Later on, the formalism has been extended to also fea-
ture integer variables (Behrmann, David, and Larsen 2004).

Let I and C be global sets of integer and clock vari-
ables, respectively. For variables n,m ∈ I , comparators ./
∈ {<,≤, 6=,≥, >}, we denote the set of integer constraints
of the form n ./ c, where c ∈ N, by IC , and the set of
integer assignments of the form n := m and n := c with
IA. Analogously, for clock variables x ∈ C, the set of clock
constraints of the form x ./ c is denoted CC , and the set of
clock resets of the form x := 0 with CR. For a set A, the
power set of A is denoted by 2A.

Definition 2 (Timed Automata). A timed automaton is a
tuple A = (Loc, Inv , E), where Loc is a finite set of lo-
cations, Inv : Loc → 2CC is a function assigning clock
invariants to locations, and E a finite set of labeled edges
between locations in Loc. For edge e ∈ E, e is labeled
with a guard consisting of integer and clock constraints from
IC ∪ CC , and with an effect consisting of integer assign-
ments and clock resets from IA ∪ CR.

A system S = {A1, . . . ,An} of timed automata is defined
as a set of timed automata A1, . . . ,An.

We remark that timed automata generally use additional
features (e. g., synchronization). As these are not needed for
our translation, we leave them out to keep things simple.

For a system of timed automata S = {A1, . . . ,An} with
Ai = (Loci, Inv i, Ei), the semantics of S is defined as fol-
lows. A state s is a mapping fromAi to locations in Loci for
all 1 ≤ i ≤ n, together with an evaluation of the variables
in I and C to their respective domains. For an edge e ∈ Ei

with i ∈ {1, . . . , n}, we say that e = (l, l′) is applicable in
s if the source location l of e matches the location of Ai in
s, the guard constraints of e are consistent with s, and for
all clocks x, the invariant Inv(l′) of the destination location
of e must be either consistent with the clock value of x in
s (if x is not reset to 0 by e), or with x = 0 (otherwise).
The latter reflects that the value of x in s′ must be consistent
with the invariant Inv(l′) of e’s destination location. For an
applicable edge e in s, applying e yields the successor state
s′ := e(s), where s′ is obtained by updating the location of s
according to the destination location l′ of e, and by updating
the evaluations of I and C in s according to e’s effect.

For a system S of timed automata and an initial state s0,
the state space of S is defined as a graph (V, T), where V is
the set of states, and T ⊆ V × V is a set of transitions such
that (s, s′) ∈ T if either there is an edge e ∈ Ei for some
i ∈ {1, . . . , n} with s′ = e(s), or the location and integer
values of s and s′ are the same, and only the clocks values of
all clocks in s and s′ differ by a positive real value d such that
all clock values still respect all invariants of the locations in
s (and s′). The latter case represents delay transitions, which
just let time pass without applying a “discrete” action.

The semantics defined above yields infinite state spaces
because the clock values are the real numbers. To account
for this, states can be represented symbolically based on
zones, yielding a symbolic state space Z , called the zone
graph (Bengtsson and Yi 2003). In a nutshell, a zone is a
conjunction of difference constraints of clocks (like x ≤ y or
x ≥ 0) that covers an infinite number of clock evaluations.
In contrast to hybrid systems, the zone graph is finite and
exact in the sense that for every symbolic state sZ reachable
in Z , every state that complies with sZ can be reached in
the concrete state space. For a more detailed description, the
reader is referred to the literature (Bengtsson and Yi 2003).
Model checking tools like UPPAAL and MCTA perform the
search by computing the zone graph on-the-fly.

3 Dynamic Encoding Refinement
We tackle the problem of static and potentially large trans-
lations by lifting the approach of Bogomolov et al. (2014a),
providing a hierarchy of encodings based on iterative trans-
lation refinement. The encodings in the hierarchy represent
underapproximations of the original task, with increasing
expressiveness, trading encoding size (in terms of number
of clock variables) versus number of actions allowed to be
applied in parallel. As a first (and minor) contribution, and in
particular as the basis for our further approach, we adapt the
translation of Bogomolov et al. (2014a) to temporal planning
and timed automata in Section 3.1. In Sections 3.2 and 3.3,
we then introduce our refinement-based translation approach

using underapproximations, and prove that it is guaranteed
to preserve completeness.

3.1 Base Encoding
Each durative action a ∈ A is translated to a correspond-
ing timed automaton Aa. The translation supports the ep-
silon separation property, which guarantees that actions do
neither start nor end at the same time point (Fox and Long
2006). We adapt the translation of Bogomolov et al., taking
into account the different features and limitations of timed
automata compared to hybrid automata.

Duration normalization For epsilon separation, ε is usu-
ally selected by the user as a small positive real value < 1 to
enforce all actions to start or end with a minimal offset of ε.
In contrast, to guarantee decidability of reachability, timed
automata only support clock comparisons to integer values.
To address this modeling limitation for a durative action a,
we normalize a’s duration dur(a) in order to simulate the
epsilon separation property in Aa. Without loss of general-
ity, we assume a given ε ∈ (0, 1) in the form ε = 10−k for
k ∈ N. Normalizing ε to 1 yields the normalized duration
dur(a)/ε ∈ N for all durative actions a. In the following,
we will identify ε and dur(a) with their corresponding nor-
malized values, respectively.

Encoding of preconditions and effects Preconditions and
effects of an action are modeled in a straight forward way
with integer variables in the corresponding edge of the timed
automaton. In more detail, propositional preconditions and
effects of an action a are modeled as integer constraints in
the guard and as integer assignments in the effect of the cor-
responding edge in Aa. Propositions p that must hold ac-
cording to a precondition of a are translated to integer con-
straints p = 1. Analogously, propositions p that are added by
an effect of a are translated to integer assignments p := 1,
whereas propositions p that are deleted by a are translated to
p := 0.

Model of propositional invariants For a durative action
a, propositional invariants pre↔ of a are modeled by ensur-
ing that pre↔ holds when a is started, and pre↔ is not vio-
lated by any other action during the execution of a. Hence,
actions a′ with a′ 6= a are neither allowed to start nor to
end if a′ violates pre↔ when a is running. To recognize
this in the translation, we introduce integer variables lock⊥p
and lock>p for all propositions p, with the semantics that
lock>p = k (or lock⊥p = k, respectively) iff k durative ac-
tions are running that require p to have value true (or false,
respectively). The values k of these lock variables are up-
dated when actions start and end, respectively.

Action translation For a given action a, we adapt the “4
location structure” of the translation Aa (Bogomolov et al.
2014a). The schematic structure is rehashed in Fig. 1.

In general, each automaton Aa refers to a separate clock
T that keeps track of a’s duration. For brevity in Fig. 1, we
have only displayed the guards, invariants, and effects that
refer to T , leaving out the remaining propositional guards
and effects, and integer constraints and effects to provide a

T≤ ε

T≤ dur(a)T≤ dur(a)+ε

T:=0

T=ε

T=dur(a)

T=dur(a)+ε

Figure 1: Global structure of timed automaton Aa

locking mechanism to ensure the ε-property. These are mod-
eled in a straight forward way with integer variables.

Following Bogomolov et al. (2014a),Aa simulates the ex-
ecution phases “off”, “starting”, “running”, and “finishing”.

Translation of Planning Tasks The base encoding of a
planning task Π = (P ,A, s0, G) to a system of timed au-
tomata is rather straight forward: The propositions P are
translated to integer variables with domain {0, 1}, and for
A = {a1, . . . , an}, we have the timed system SΠ :=
{Aa1 , . . . ,Aan} of corresponding timed automata.

Correctness Unlike the encoding by Bogomolov et al.
(2014a) applied to PDDL+ planning, the base encoding is
exact when applied to temporal planning. This is because in
temporal planning, we neither feature processes nor events,
which render Bogomolov et al.’s encoding an overapprox-
imation for the more general PDDL+ formalism. Further-
more, reachability for timed automata is decidable, and in
particular, symbolic traces in zone graphs correspond to
concrete traces (e. g., Bengtsson and Yi 2003). This allows
model checking tools like UPPAAL or MCTA to be applied
also for planning, rather than for proving non-existence of
plans. This is an important difference to hybrid automata and
automata-based hybrid planning, emphasized in the follow-
ing theorem.

Theorem 1. Let Π be a planning task and SΠ be its base
encoding of timed automata. Then every symbolic plan on
the zone graph of SΠ corresponds to a concrete plan in Π.

Proof. The fact that the base encoding is exact when applied
to temporal planning tasks, and the correspondence of con-
crete and symbolic traces in zone graphs imply that the sym-
bolic traces in the zone graph correspond to concrete traces,
and vice versa (Bengtsson and Yi 2003).

The concrete plan extraction can be achieved by casting
the problem of trace extraction from a sequence of zones to
a linear programming problem (Li, Aanand, and Bu 2007).

We remark that, according to this translation, it is not pos-
sible to have two instances of the same action that run simul-
taneously.

3.2 Dynamic Encoding Framework
As discussed, the clock variables generally cause a bottle-
neck for model checking timed automata. In the base en-
coding reported by Bogomolov et al., every automaton gen-
erally embodies a separate clock variable. In this section,

we provide a framework for computing a hierarchy of trans-
lations, which represent underapproximations of the origi-
nal planning task with a fewer number of clock variables.
Informally, an underapproximation of a planning task Π is
a planning task Π′ with the property that all the behavior
of Π′ is retained in Π, but not vice versa. As an exam-
ple, this is the case if Π and Π′ only differ in their action
sets, and the set of Π’s actions is a superset of the actions
of Π′. This idea has been investigated for classical plan-
ning by Heusner et al. (2014). Generally, approximations
and their refinements have been thoroughly studied for plan-
ning and model checking. At the same time, such approaches
usually rely on overapproximations (Clarke et al. 2000;
Seipp and Helmert 2018; Bogomolov et al. 2014b), while
our framework employs underapproximations.

We propose an encoding hierarchy which yields under-
approximations in a slightly different way, by trading the
number of clocks in the model versus the number of actions
that are allowed to be applied in parallel. The underapprox-
imation is thus obtained by restricting the actions that are
allowed to be applied in parallel. In the encoding, actions
that are not allowed to be applied in parallel can share the
same clock variable, because the corresponding automata do
not simulate running the corresponding actions in parallel.
To conveniently formalize this idea, we introduce the notion
of bucket-based encodings. For an automatonA that models
action a, we will denote A’s clock variable by clock(A).

Definition 3 (Bucket-Based Encoding). Consider a plan-
ning task Π = (P ,A, s0, G) with A = {a1, . . . , an}
and base encoding SΠ = {Aa1 , . . . ,Aan}. Let B =
{B1, . . . , Bm} be a set of buckets of actions, such that
Bi ⊆ A for 1 ≤ i ≤ m,

⋃
Bi = A, and Bi ∩ Bj = ∅ for

i 6= j. The bucket-based encoding SΠ,B with respect to Π
and B is defined based on SΠ as follows. For all 1 ≤ i ≤ m
and buckets Bi = {ai1, . . . , aini

}:

1. For all actions aik, a
i
t ∈ Bi, clock(Aai

k) = clock(Aai
t),

i. e., all action automata for actions in the same bucket
have the same clock variable.

2. The automata A1, . . . ,Ani corresponding to the actions
in Bi embody an additional integer variable pi with do-
main {0, 1}, initially equal to 0, such that pi is required to
be zero for a ∈ Bi in order to start a, pi is set to 1 once a
is started, and reset to 0 again once a is finished.

The latter condition in Def. 3 ensures that at most one
automaton in each bucket is running at every time point.

Bucket-based encodings allow for a simple and flexible
generalization of the base encoding, allowing to restrict the
number of actions to be applied in parallel, and decreasing
the number of clock variables in the system. At the one ex-
treme end of the spectrum, every action is partitioned into a
separate bucket, allowing for maximal parallelism as in the
original planning task. At the other extreme end, all actions
are partitioned into one single bucket, allowing for no par-
allelism at all. We remark that, as pointed out by Cushing
et al. (2007), in various temporal models, no parallelism is
needed to find a solution – bucket-based encodings in partic-
ular provide a convenient way to reflect such observations.

We observe that bucket-based encodings generally corre-
spond to underapproximations of the original planning task
in the following sense. If a plan exists in the underapproxi-
mation, then we are done. In contrast, if no plan exists in the
bucket-based encoding, we cannot conclude that no plan ex-
ists in the original planning task because less behavior is al-
lowed by restricting action concurrency. More formally, for
a planning task Π with base encoding SΠ and bucket-based
encoding SΠ,B, every trace in SΠ,B is a trace in SΠ, but not
vice versa. To account for this underapproximation property,
we provide a framework that allows for iteratively refining
the encodings by refining the bucket structure, such that in
the limit it will converge to the base encoding.

Bucket-Based Encoding Refinement A convenient way
to account for trading the approximations’ expressiveness
versus the encodings’ size is to refine the encoding within
a refinement cycle, such that successively more behavior is
allowed in the refined encodings. Generalized to temporal
planning as model checking with bucket-based encodings,
the refinement algorithm starts with the most strict bucket-
based encoding SΠ,B

0 , allowing for no parallelism at all.
Inductively, if no plan can be found in SΠ,B

n (i. e., in the
bucket-based encoding applied in iteration n), the encoding
is refined to SΠ,B

n+1 such that strictly more behavior is pos-
sible in SΠ,B

n+1. The skeleton of the algorithm is provided in
Algorithm 1.

Algorithm 1 Skeleton of refinement
1: function PLAN-WITH-REFINEMENT(P , A, s0, G)
2: n := 0
3: B := {A} // no parallelism initially
4: while true do
5: explore zone graph of SΠ,B

n

6: if no solution found in SΠ,B
n then

7: if SΠ,B
n 6= SΠ,B

n+1 then
8: n := n+ 1
9: else

10: return unsolvable
11: end if
12: else
13: return solution
14: end if
15: end while
16: end function

To ensure completeness, there are two conceptual ques-
tions to be addressed, namely 1) how and 2) when to refine
the encodings. We discuss these points in the following.

1) To ensure completeness, we need to establish a progress
property, guaranteeing that the overall refinement process
eventually converges to a planning task with the same se-
mantics as the original one. Using bucket-based encod-
ings, this property can be achieved by simply splitting at
least one bucket in B into at least two buckets, such that
for at least two actions the restriction of not being appli-
cable in parallel is eliminated.

2) This point addresses the question at which time to decide
that “no solution found in SΠ,B

n ” (line 6). This decision

of refining SΠ,B
n can take place at any point in time when

no solution has been found so far, if SΠ,B
n 6= SΠ,B

n+1 (at the
latest when the zone graph induced by SΠ,B

n is explored
completely). In contrast, if SΠ,B

n = SΠ,B
n+1, then “no solu-

tion found in SΠ,B
n ” triggers iff the whole zone graph is

explored without finding a solution. In the following, we
assume that the latter property is satisfied.

We emphasize that the discussions of questions 1) and
2) are of conceptual nature, with the primary objective of
guaranteeing completeness of the resulting planning algo-
rithm (we provide a concrete instantiation in the next sec-
tion). Considering termination, we observe that the algo-
rithm terminates when a plan is found in some bucket-based
encoding (line 13). Otherwise, based on 1) and 2), the refine-
ment process eventually computes a bucket-based encoding
that yields an exact underapproximation, where no plans are
ruled out any more (e. g., when all buckets contain only one
action, i. e., if SΠ,B

n = SΠ,B
n+1). In this case, the algorithm

also terminates when no plan is found in this final encoding
(line 10), proving that there does not exist a plan in Π. In
Prop. 1, we will make these observations precise. We will
call planning tasks Π solvable if there exists a plan in Π.

Proposition 1. Consider a planning task Π, and let S =

{SΠ,B
0 ,SΠ,B

1 , . . . } be bucket-based encodings of Π com-
puted based on 1) and 2). Then there exists a bucket-based
encoding SΠ,B

i ∈ S such that there exists a trace in SΠ,B
i

that corresponds to a plan in Π iff Π is solvable.

Proof. “⇒”: Let SΠ,B
i ∈ S be a bucket-based encoding al-

lowing for a trace leading to a goal state. This trace corre-
sponds to a plan, as the base encoding is a special case of the
encoding by Bogomolov et al. (2014a). Hence, Π is solvable.
“⇐”: Let Π be solvable. We show that the algorithm even-
tually computes an encoding in S for which a solution is
found. First, observe that S is a finite set, as the number of
actions (and hence, the number of clocks) is finite. Thus,
buckets can be split only finitely often. Second, observe that
in the limit, S contains an exact encoding which precisely
reflects the semantics of Π, i. e., allowing all actions to be
applied in parallel that are also applicable in parallel ac-
cording to Π. Suppose that the case “no solution found in
SΠ,B
n ” in the algorithm triggers (line 6). If SΠ,B

n = SΠ,B
n+1,

then SΠ,B
n is the encoding for which no further refinement

is possible, i. e., containing a separate bucket for each ac-
tion. Hence, SΠ,B

n is exact. According to 2), the zone graph
of SΠ,B

n is explored entirely without finding a solution, in
contradiction to the assumption that Π is solvable. Hence,
SΠ,B
n 6= SΠ,B

n+1. Therefore, SΠ,B
n+1 is a refinement of SΠ,B

n
which satisfies the progress property according to 1). The
reasoning applies inductively for SΠ,B

n+1. The claim follows
because for all n < |S| refinement steps, either SΠ,B

n con-
tains a trace that corresponds to a plan, or the refinement
process continues for n+ 1 until S contains an exact encod-
ing for which a solution exists.

3.3 Framework Instantiation
We provide an instantiation of the refinement framework
with a focus on the conceptual question on how to refine
the encoding (see below for a discussion on when to re-
fine). As discussed, the refined encoding needs to support the
progress property to be effective in the sense that complete-
ness is guaranteed, i. e., SΠ,B

n+1 should be “finer” than SΠ,B
n in

a measurable way such that convergence to an exact encod-
ing is guaranteed in the limit. In addition, SΠ,B

n+1 should al-
low more parallel actions that are potentially needed to find
a plan.

A particular (and intuitive) situation where actions a and
a′ potentially need to be applied in parallel is that a’s start
effect supports a condition that is needed by a′. In particu-
lar, this is the case if a supports a condition that is needed
as an invariant throughout the whole execution of a′. In the
following, we propose a refinement scheme by successively
splitting buckets according to actions that support invari-
ants and preconditions of other actions. For convenience,
we will use the following notation. We say that an action
a supports an invariant of action a′, denoted by a i a′,
if the start effect of a sets a variable to a value needed by
the propositional invariant of a′, i. e., there exists a propo-
sition p ∈ P such that effa` |= p and prea

′

↔ |= p, where
effa` and prea

′

↔ denote the start effect of a and the proposi-
tional invariant of a′, respectively. More generally, we say
that a supports an invariant of a′ after n steps, denoted
by a n

i a′, if there exist actions a1, . . . , an such that
a i a1, . . . , an i a′. Analogously, we say that a sup-
ports a precondition of a′, denoted by a p a′, if there ex-
ists a proposition p ∈ P such that effa` |= p, and additionally,
prea

′

` |= p or prea
′

a |= p, where prea
′

` and prea
′

a denote the
start precondition and the end condition of a′, respectively.
We define a n

p a′ on propositions analogously to a n
i a′.

Furthermore, for a set of buckets B, we say that B respects
 n

i if for all actions a1, . . . , an, ai 6= aj for i 6= j, with
a1 i a2, . . . , an−1 i an, these actions are located in dif-
ferent buckets in B, i. e., there are buckets B1, . . . , Bn ∈ B,
Bi ∩ Bj = ∅ for i 6= j, and a1 ∈ B1, . . . , an ∈ Bn. The
corresponding definition for p is analogous.

Definition 4 (Encoding Refinement). Let Π be a planning
task, B be a set of buckets, and SΠ,B be an encoding for Π
and B. The refinement SΠ,Br

r of SΠ,B is defined as follows:

1. If there exists n ∈ N such that B respects n−1
i , but does

not respect n
i , then compute Br by splitting the buckets

in B such that Br respects n
i .

2. If B respects N
i for a maximal N ∈ N, then apply bullet

point 1. using the relation n
p instead of n

i .

3. If B respects N
i and M

p for maximal N,M ∈ N, split
B so that only actions that cannot be applied in parallel
according to Π’s semantics occur in equal buckets.

The computation of Def. 4 can be reduced to the com-
putation of transitive closures. In particular, the “maximal
N,M ∈ N” in Def. 4 exist because the number of actions
(and hence, the transitive closure) is finite. The definition

guarantees that an exact encoding can eventually be com-
puted. The third point can be implemented, e. g., by hav-
ing each action in a separate bucket, or by sharing the same
bucket only if actions have mutex invariants.

Proposition 2. Plan-with-refinement (Alg. 1) when comput-
ing SΠ,B

n+1 from SΠ,B
n according to the encoding refinement

(SΠ,Br
r from SΠ,B as in Def. 4) is completeness preserving.

Proof. By definition, the refinement eventually yields an
encoding SΠ,B with buckets B that allows maximal paral-
lelism according to the semantics of Π. Hence, the required
progress property of Prop. 1 is satisfied.

Finally, let us shortly discuss when to refine a given en-
coding. The most canonical (though not efficient) strategy
is to refine when the zone graph is explored completely. We
can think of presumably more efficient strategies (e. g., re-
fining based on plateau sizes during heuristic search). We
argue that such strategies deserve a deeper investigation on
their own, and leave such an investigation for future work.

4 Experiments
We conducted a feasibility study on common IPC domains,
using an implementation that translates PDDL to timed au-
tomata and automatically refines if no plan is found. As a ba-
sis, we used the model checker MCTA (Kupferschmid et al.
2008; Wehrle and Kupferschmid 2012) applied with greedy
best-first search and the hU heuristic (Kupferschmid et al.
2006), which corresponds to the FF heuristic (Hoffmann
and Nebel 2001) adapted to timed automata. At this point,
we have neither optimized the hU heuristic to the particular
class of timed automata, nor adapted MCTA to require all
automata to be in their “off” location once a plan is found
(the latter can be achieved by a simple extension).

We refine when the current zone graph is explored com-
pletely. In this case, we use a simplified variant of the en-
coding refinement strategy (Def. 4) to decide how to refine,
which considers invariants and preconditions (correspond-
ing to bullet points 1 and 2 in Def. 4, respectively) in the
same step. The implementation of our refinement approach
is called MCTAr.

We compare MCTAr to Temporal Fast Downward (TFD)
(Eyerich, Mattmüller, and Röger 2009), OPTIC (Benton,
Coles, and Coles 2012), POPF (Coles et al. 2010), COLIN
(Coles et al. 2012), and ITSAT (Rankooh and Ghassem-Sani
2015). We also compare our implementation to MCTA ap-
plied with the base encoding (see Sec. 3.1), called MCTAb,
that directly allows for full parallelism. In our experiments,
some action automata in the base encoding already share
clocks if the corresponding actions are not applicable in par-
allel (i. e., still allowing full parallelism). We used the propo-
sitional temporal domains Crewplanning, Elevator, Open-
stacks, Parcprinter, Peg Solitaire, and Sokoban from IPC’08,
Matchcellar, Temporal Machine Shop, and TurnAndOpen
from IPC’141, and the DriverLog Shift domain (Coles et al.
2009). Each domain consists of 30 tasks to be solved, with

1The IPC domains are available at https://github.com/
potassco/pddl-instances.

the exception of Matchcellar and TurnAndOpen which only
consist of 20 tasks each. We used a timeout of 30 minutes
and a memory limit of 4 GB per run.

Table 1 shows the results of our evaluation. The first six
rows show the results for all domains for which concurrency
is not required to find a solution. The last four rows show the
results for all domains which are known to require concur-
rency. The coverage results show the number of tasks where
a goal trace has been found. In the case of MCTAr, the do-
mains which do not need concurrency are solved in the first
encoding. For the domains that require concurrency, we not
only report the number of tasks for which a goal trace has
been found, but also the number of refined encodings, in
parentheses, that were used for all runs.

We observe that the different approaches have comple-
mentary strengths. MCTAr often finds goal traces for a sim-
ilar number of tasks compared to the other tools, and of-
fers its strengths in Pegsol and Parcprinter. In particular, in
Parcprinter, MCTAr is the only implementation that solves
all tasks. In addition, we observe that, for most domains, the
coverage of the refinement approach is considerably higher
compared to the base encoding (MCTAb).

The makespan results in Table 1 show the average
makespans per domain on the commonly solved tasks, i. e.,
on the tasks solved by all planners in the domain. To evalu-
ate the “pure” makespan of the plans found by the search,
the results for TFD are (like the results for MCTAr and
MCTAb) given without rescheduling to further improve the
makespan in a post-processing step. Generally, as our ap-
proach trades efficiency versus parallelism, the makespan
computed by MCTAr is expected to be higher compared to
the other temporal planners, which can be observed for all
domains. While the makespan computed by MCTAr cannot
compete with the other tools, we note that the difference of
the makespans is smallest between MCTAr and TFD, since
both tools are based on heuristic state space search. The
question whether the makespan can be improved efficiently
during the search already, e. g., by using specialized heuris-
tics, points to possible future research. MCTAb mostly finds
traces with shorter makespan than MCTAr since MCTAb al-
lows for full parallelism and MCTAr uses an underapproxi-
mation for parallelism. As MCTAb performs a non-optimal
search, the question whether the makespan can be efficiently
improved during the search also remains for MCTAb.

5 Conclusions

We proposed a generic framework for temporal planning as
model checking which is based on dynamic encoding re-
finement. Empirically, we provided an instantiation which
shows the feasibility of our approach, revealing complemen-
tary strengths to well-established planners. To further exploit
its potential, it will be interesting to investigate more fine-
grained instantiations, including more sophisticated strate-
gies when to refine the encodings, as well as specific adap-
tations of the applied heuristic in MCTA.

coverage makespan
Dom.
Crewp.
Elev.
Opens.
Parcp.
Pegsol.
Sokob.
Match.
TMS
T&O
Drv.

MCTAr MCTAb TFD OPTIC POPF COLIN ITSAT
30 30 30 30 28 30 30
12 2 30 19 14 16 13
30 19 30 30 30 30 24
30 15 22 12 17 12 25
30 27 29 29 28 28 30
12 11 12 14 12 12 16

20 (2) 20 20 0 20 20 20
0 (3) 0 0 0 0 0 14
2 (2) 0 18 9 8 8 5
11 (7) 0 7 0 10 10 15

MCTAr MCTAb TFD OPTIC POPF COLIN ITSAT
7769.1 3316.6 6239.7 2622.9 2747.1 2622.9 2836.7
587.0 250.0 309.4 172.0 180.5 172.0 243.7
1085.3 414.2 613.8 123.7 177.6 123.7 211.8

565782.6 181110.3 201830.6 75255.3 82077.5 75255.3 74555.4
14.4 10.2 9.2 7.6 7.5 7.5 7.1
31.7 28.5 19.7 23.0 22.5 22.5 20.6
74.2 57.0 72.6 - 57.0 57.0 57.2

- - - - - - 20
175.6 - 101.5 40.0 38.0 42.5 33.3
382.6 - 268.3 - 122.3 122.3 142.6

Table 1: Overview of coverage and makespan results (best results in bold). Abbreviations: Crewp.: Crewplanning, Elev.: Elevators, Opens.:
Openstacks, Parcp.: Parcprinter, Pegsol.: Peg Solitaire, Sokob.: Sokoban, Match.: Matchcellar, TMS: Temporal Machine Shop, T&O: Tur-
nAndOpen, Drv: DriverLog Shift

Acknowledgments
Sergiy Bogomolov was partially supported by the ARC
project DP140104219 (Robust AI Planning for Hybrid Sys-
tems) and by the Air Force Office of Scientific Research un-
der award number FA2386-17-1-4065. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of the United States Air Force. Daniele Maga-
zzeni was partially supported by InnovateUK under the grant
TS/R018790/1.

References
Alur, R., and Dill, D. 1994. A theory of timed automata.
Theoretical Computer Science.
Behrmann, G.; David, A.; Larsen, K.; Håkansson, J.; Pet-
tersson, P.; Yi, W.; and Hendriks, M. 2006. UPPAAL 4.0.
In QEST.
Behrmann, G.; David, A.; and Larsen, K. 2004. A tutorial
on Uppaal. In SFM-RT.
Bengtsson, J., and Yi, W. 2003. Timed automata: Semantics,
algorithms and tools. In Lectures on Concurrency and Petri
Nets.
Benton, J.; Coles, A.; and Coles, A. 2012. Temporal plan-
ning with preferences and time-dependent continuous costs.
In ICAPS.
Bogomolov, S.; Magazzeni, D.; Podelski, A.; and Wehrle,
M. 2014a. Planning as model checking in hybrid domains.
In AAAI.
Bogomolov, S.; Frehse, G.; Greitschus, M.; Grosu, R.;
Pasareanu, C. S.; Podelski, A.; and Strump, T. 2014b.
Assume-guarantee abstraction refinement meets hybrid sys-
tems. In HVC.
Bogomolov, S.; Magazzeni, D.; Minopoli, S.; and Wehrle,
M. 2015. PDDL+ planning with hybrid automata: Founda-
tions of translating must behavior. In ICAPS.
Bryce, D.; Gao, S.; Musliner, D.; and Goldman, R. 2015.
SMT-based nonlinear PDDL+ planning. In AAAI.
Cimatti, A.; Giunchiglia, E.; Giunchiglia, F.; and Traverso,
P. 1997. Planning via model checking: A decision procedure
for AR. In ECP.

Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-guided abstraction refinement. In
CAV.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artificial Intelligence.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In ICAPS.
Coles, A.; Coles, A.; Clark, A.; and Gilmore, S. 2011. Cost-
sensitive concurrent planning under duration uncertainty for
service-level agreements. In ICAPS.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN:
Planning with continuous linear numeric change. JAIR.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is temporal planning really temporal? In IJCAI.
Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrig-
ila, B. 2009. UPMurphi: A tool for universal planning on
PDDL+ problems. In ICAPS.
Dierks, H.; Behrmann, G.; and Larsen, K. 2002. Solv-
ing planning problems using real-time model checking. In
AIPS-Workshop Planning via Model-Checking.
Dill, D. 1989. Timing assumptions and verification of finite-
state concurrent systems. In Automatic Verification Methods
for Finite State Systems.
Edelkamp, S., and Helmert, M. 2001. The model checking
integrated planning system (MIPS). AI Magazine.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the context-enhanced additive heuristic for temporal and nu-
meric planning. In ICAPS.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. JAIR.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. JAIR.
Gerevini, A.; Saetti, A.; and Serina, I. 2010. Temporal
planning with problems requiring concurrency through ac-
tion graphs and local search. In ICAPS.
Heusner, M.; Wehrle, M.; Pommerening, F.; and Helmert,
M. 2014. Under-approximation refinement for classical
planning. In ICAPS.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR.
Kupferschmid, S.; Hoffmann, J.; Dierks, H.; and Behrmann,
G. 2006. Adapting an AI planning heuristic for directed
model checking. In SPIN.
Kupferschmid, S.; Wehrle, M.; Nebel, B.; and Podelski, A.
2008. Faster than Uppaal? In CAV.
Li, X.; Aanand, S.; and Bu, L. 2007. Towards an efficient
path-oriented tool for bounded reachability analysis of linear
hybrid systems using linear programming. Electronic Notes
in Theoretical Computer Science.
Rankooh, M. F., and Ghassem-Sani, G. 2015. ITSAT: An
efficient SAT-based temporal planner. JAIR.
Seipp, J., and Helmert, M. 2018. Counterexample-
guided Cartesian abstraction refinement for classical plan-
ning. JAIR.
Vidal, V., and Geffner, H. 2004. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. In AAAI.
Vidal, V. 2014. YAHSP3 and YAHSP3-MT in the 8th inter-
national planning competition. In IPC.
Wang, D., and Williams, B. 2015. tBurton: A divide and
conquer temporal planner. In AAAI.
Wehrle, M., and Kupferschmid, S. 2012. Mcta: Heuristics
and search for timed systems. In FORMATS.

