
Distributed Approximate Maximum Matching

in the CONGEST Model

Mohamad Ahmadi∗

University of Freiburg

mahmadi@cs.uni-freiburg.de

Fabian Kuhn∗

University of Freiburg

kuhn@cs.uni-freiburg.de

Rotem Oshman
Tel Aviv University

roshman@tau.ac.il

Abstract

We study distributed algorithms for the maximum matching problem in the CONGEST
model, where each message must be bounded in size. We give new deterministic upper bounds,
and a new lower bound on the problem.

We begin by giving a distributed algorithm that computes an exact maximum (unweighted)
matching in bipartite graphs, in O(n log n) rounds. Next, we give a distributed algorithm that
approximates the fractional weighted maximum matching problem in general graphs. In a
graph with maximum degree at most ∆, the algorithm computes a (1 − ε)-approximation for
the problem in time O

(
log(∆W)/ε2

)
, where W is a bound on the ratio between the largest

and the smallest edge weight. Next, we show a slightly improved and generalized version of the
deterministic rounding algorithm of Fischer [DISC ’17]. Given a fractional weighted maximum
matching solution of value f for a given graph G, we show that in time O((log2(∆) + log∗ n)/ε),
the fractional solution can be turned into an integer solution of value at least (1 − ε)f for
bipartite graphs and (1−ε) · g−1

g ·f for general graphs, where g is the length of the shortest odd
cycle of G. Together with the above fractional maximum matching algorithm, this implies a
deterministic algorithm that computes a (1− ε) · g−1

g -approximation for the weighted maximum

matching problem in time O
(

log(∆W)/ε2 + (log2(∆) + log∗ n)/ε
)
.

On the lower-bound front, we show that even for unweighted fractional maximum match-
ing in bipartite graphs, computing an (1 − O(1/

√
n))-approximate solution requires at least

Ω̃(D +
√
n) rounds in CONGEST. This lower bound requires the introduction of a new 2-party

communication problem, for which we prove a tight lower bound.

1 Introduction

In the maximum matching problem, we are given a graph G, and asked to find a maximum-size
set of edges of G which do not share any vertices. In the weighted version of the problem, the
graph edges are associated with weights, and our goal is to find a set of vertex-disjoint edges that
maximizes the total weight. Maximum matching is a fundamental graph optimization problem,
extensively studied in the classical centralized setting, as well as in other settings such as streaming
algorithms (e.g., [25]) and sublinear-time approximation (e.g., [30]). The problem has also received
significant attention from the distributed computing community, so far focusing on approximation
algorithms (cf. Section 2).

In this paper we study maximum matching in the CONGEST model, a synchronous network com-
munication model where messages are bounded in size. We consider both exact and approximate
maximum matching, weighted and unweighted, and give new upper bounds and a lower bound.

∗Supported by ERC Grant No. 336495 (ACDC)

Our upper bounds are deterministic, while the lower bound holds for randomized algorithms as
well. Our contributions are as follows.

1.1 Exact Unweighted Maximum Matching in Bipartite Graphs

In the sequential world, the fastest-known algorithm for finding a maximum matching in unweighted
bipartite graphs is the Hopcroft-Karp algorithm [18]. Its running time is O(m ·

√
n) on graphs with

n nodes and m edges. Its central building block is a fast way, using breadth-first-search, to find a
maximal set of node-disjoint augmenting paths: paths of alternating matching and non-matching
edges, used to increase the size of the matching.

A naive implementation of the Hopcroft-Karp algorithm in the CONGEST model would yield
an algorithm requiring O(n3/2) rounds. Taking inspiration and ideas from Hopcroft-Karp, we are
able to instead give an algorithm that takes only O(n log n) rounds. More specifically, we obtain
the following result.

Theorem 1.1. The deterministic round complexity in the CONGEST model of computing an ex-
act maximum matching in unweighted, bipartite graphs is O(s∗ log s∗), where s∗ is the size of a
maximum matching.

Note that the algorithm is not assumed to initially know the value s∗.
The core of our algorithm is a procedure that finds a single augmenting path of length k in

O(k) rounds. Together with the well-known fact that if we are given a matching of size s∗ − `, we
are guaranteed to have an augmenting path of length at most O(s∗/`), this procedure implies the
above result. To our knowledge, this is the first non-trivial algorithm for exact bipartite maximum
matching in the CONGEST model.

1.2 Approximate Fractional Weighted Maximum Matching

One strategy for computing an approximate maximum matching is to first solve the fractional
version of the problem, and then round the solution to obtain an integral matching. A fractional
matching is the natural linear programming (LP) relaxation of the notion of a matching, where
instead of taking a set of edges (where each edge is “taken” or “not taken”), we instead assign each
edge e ∈ E a value ye ∈ [0, 1]. Whereas before, we required that each node participate in at most
one edge of the matching, we now require that for each node v, the sum of the values of v’s edges
must be at most 1. This is a linear constraint:

∑
u∈N(v) u{u,v} ≤ 1.

To compute a fractional matching, we can thus bring to bear the powerful machinery of linear
programming (LP). In particular, the fractional maximum matching problem is a packing LP.
Packing LPs and their duals, covering LPs, are a class of LPs for which there are particularly efficient
distributed solutions (e.g., [20, 27]). In this paper, we extend an approach that was developed by
Eisenbrand, Funke, Garg, and Könemann [9] to solve the fractional set cover problem. We prove
the following theorem.

Theorem 1.2. Let G = (V,E,w) be a weighted graph. Assume that ∆ is the maximum degree of G,
and let W denote the ratio between the largest and smallest edge weight. Then, for every ε > 0, there
is a deterministic O

(
log(∆W)/ε2

)
-time CONGEST algorithm to compute a (1− ε)-approximation

for the maximum weighted fractional matching problem in G.

The algorithm is based on another distributed implementation of the algorithm of [9], which
appeared in [20]. The algorithm of [20] is general: it approximates general covering and packing
LPs. When applied to the weighted fractional matching problem, the algorithm of [20] computes a

2

(1− ε)-approximation in time O
(

log(∆W)/ε4
)
, which was the best (1− ε)-approximation for the

problem in the CONGEST model prior to the present work.
As we are only interested in the matching problem, our algorithm is simpler than the algorithm

of [20], and more importantly, our algorithm significantly improves the ε-dependency of computing
a (1− ε)-approximate fractional matching in the CONGEST model.

1.3 Deterministic Rounding of Fractional Matchings

After computing a fractional matching, we wish to round the edge values to {0, 1}, to obtain an
integral matching with roughly the same weight.

Randomized rounding of LP solutions, in order to obtain approximate solutions of the cor-
responding integer LPs, has been used for a while, even in the distributed context (e.g., [19, 20]).
However, deterministic distributed rounding algorithm have only been studied recently. In [11], Fis-
cher gave an amazingly simple and elegant deterministic O(log2 ∆)-time algorithm, which rounds a
fractional unweighted matching into an integral matching that is smaller by only a constant factor.
Repeating this rounding step O(log n) times, Fischer obtains a maximal matching in deterministic
time O(log2 ∆ log n).1

At its core, the approach of Fischer [11] solves the problem on bipartite graphs, and it de-
composes the problem of rounding a fractional matching to the problem of rounding fractional
matchings on paths and even cycles. Our contribution in this part of the paper is two-fold. First,
while Fischer loses a constant factor when rounding the matching, we show that a simple change
in the algorithm allows us to only lose a factor (1− ε) on bipartite graphs. Second, we generalize
the technique to also work for weighted (fractional) matching.

Theorem 1.3. Let G = (V,E,w) be a weighted graph, y be a fractional matching of G, and ε > 0 be

a parameter. There is a deterministic O
(log2(∆/ε)+log∗ n

ε

)
-time CONGEST algorithm that computes

an matching M of G such that the ratio between the total weight of M and the value of the given
fractional weighted matching y is at least 1 − ε if G is bipartite, and at least (1 − ε) · g−1

g if G is
not bipartite and g is the length of the shortest odd cycle of G.

In combination with Theorem 1.2, we obtain a deterministic CONGEST algorithm to com-
pute a (1− ε)-approximate maximum weighted matching in bipartite graphs in time O

(log(∆W)
ε2

+
log2(∆/ε)+log∗ n

ε

)
. For general graphs, we obtain a (2/3−ε)-approximate maximum weighted match-

ing in the same asymptotic time. To the best of our knowledge, this is the first CONGEST algorithm
that obtains an approximation ratio better than 1/2 for the weighted maximum matching problem
in general graphs.

1.4 Lower Bound for (1−O(1/
√
n))-Approximate Fractional Matching

As we said above, in this paper we show that a (1−ε)-approximate maximum matching in bipartite
graphs can be computed in time Õ(1/ε2) (ignoring the logarithmic terms in n,∆ and W). Is this
dependence on ε optimal? We do not yet know, but we are able to show that Õ(1/ε) rounds are
necessary, for sufficiently small ε:

Theorem 1.4. There exists a constant α ∈ (0, 1), such that any randomized algorithm that com-
putes a (1−α/

√
n)-multiplicative approximation to the maximum fractional matching in unweighted,

bipartite graphs with diameter O(log n) requires Ω(
√
n/ log(n)) rounds.

1Actually, the earlier polylog-time deterministic algorithms for computing a maximal matching [14, 15] can also
be interpreted as approximate rounding algorithms. However, these algorithms are not explicitly phrased in this way.

3

The lower bound is based on the framework of [28], and it is shown by reduction from two-
party communication complexity. Given a fast algorithm A for approximate fractional matching, we
construct a protocol for two players, Alice and Bob, to solve a communication complexity problem,
by simulating the execution of A in a network that the players construct.

In contrast to [28], here we are not interested in a verification problem. In [28], in addition to
the network graph, there is a set of marked edges, and the goal is to check whether the marked
edges satisfy some property. Thus, we can give the algorithm a “hard subgraph to check”, even if
the corresponding search problem is easy: e.g., [28] shows that checking if the marked edges form
a spanning tree is hard (Ω̃(

√
n + D) rounds), even though constructing a spanning tree is easy

(O(D) rounds). Here, we do not give the algorithm a set of marked edges, and instead we allow
the algorithm to compute any feasible fractional matching.

To prove the lower bound, we argue that a good approximation to the maximum matching
on odd paths “looks different” from one on even paths, and this difference allows us to solve a
communication complexity problem, PBXA, that we introduce for this purpose. We prove, using
information complexity [3], that the randomized communication complexity of PBXA is linear. One
unusual feature of this lower bound is that at the end of the simulation, each player only knows
part of the matching constructed. Thus, we cannot guarantee that both players will “see” the
difference between odd and even paths, but at least one of them will. The problem PBXA reflects
this: instead of asking the players to agree on an output, each player produces its own output, and
at least one of them must “be correct”.

2 Related Work

We survey here only the most directly relevant work. In particular, we mostly focus on the
CONGEST model, and we discuss only some of the work for the LOCAL model, where messages do
not need to be of bounded size.

The first polynomial-time algorithm for unweighted maximum matching in general graphs was
given by Edmonds [7, 8]. It was preceded by the algorithm of Hopcroft and Karp [18], which is
restricted to bipartite graphs. Our exact algorithm for bipartite graphs is inspired by and uses
insights from the Hopcroft-Karp algorithm.

Because exact maximum matching is a “global problem”, work on distributed algorithms has
mostly been focused on approximation algorithms. The first ones were for the maximal matching
problem; in the unweighted case, a maximal matching is also a 1/2-approximation to the maxi-
mum matching. Even in the 80s, simple and elegant solutions for maximal matching in O(log n)
rounds were known [1, 17, 24]. (These papers give PRAM algorithms, but they translate to the
CONGEST model easily.) The best randomized distributed algorithm for maximal matching is due
to Barenboim et al. [4], and has time complexity O(log ∆ + log3 log n).

On the deterministic side, maximal matching was first shown to be solvable in polylogarithmic
distributed time, O(log4 n) rounds, in [14, 15]. While they do not explicitly analyze the message
size, we believe that their algorithm can be implemented in the CONGEST model. Currently, the
best deterministic algorithm (in CONGEST and LOCAL) is from [11], and requires O(log2 ∆ log n)
rounds. As one of our algorithms heavily builds on the techniques of [11], we discuss them in
more detail in Section 6. The best lower bound for maximal matching, and more generally,
for obtaining constant or polylogarithmic approximations for unweighted maximum matching, is

Ω
(

min
{

log ∆
log log ∆ ,

√
logn

log logn

})
[21]. The lower bound even holds for randomized algorithms in the

LOCAL model.
Beyond the simple 1/2-approximation provided by a maximal matching, there is series of works

4

on the distributed complexity of obtaining a (1− ε)-approximate maximum cardinality matching.
All are based on the framework of Hopcroft and Karp [18], of repeatedly computing a (nearly)
maximal vertex-disjoint set of short augmenting paths. The first such algorithm is [22], a random-
ized CONGEST algorithm with time complexity O(log n) for every constant ε > 0; however, the
dependence on ε is exponential in 1/ε. This was recently improved in [2], which gives a randomized
algorithm with time complexity O

(
poly(1/ε)· log ∆

log log ∆

)
. Note that the ∆-dependency of the running

time matches the lower bound of [21]. There are also deterministic distributed algorithms to obtain
a (1 − ε)-approximate maximum cardinality matching in polylogarithmic time [6, 10, 12, 13], but
they require the LOCAL model.

As for weighted matching, fhe first paper to explicitly study distributed approximation of the
weighted maximum matching is [29]. They give a randomized O(log2 n)-time algorithm with an
approximation ratio of 1/5. This result for the weighted case was later improved in [23] and in [22],
which give O(log n)-round randomized CONGEST algorithms with approximation ratios (1/4− ε)
and (1/2 − ε), respectively. In [2], Bar-Yehuda et al. improve the running time and provide a
(1/2 − ε)-approximation in time O(log ∆/ log log ∆). The only known polylog-time deterministic
CONGEST algorithm for approximate weighted maximum matching in general graphs is the (2−ε)-
approximation algorithm by Fischer [11], which runs in O

(
log2 ∆ · log 1

ε

)
rounds.

3 Model and Definitions

Communication model: Our algorithms and lower bounds are designed for the CONGEST model
[26]. The network is modeled as a an undirected n-node graph G = (V,E), where each node has a
unique O(log n)-bit identifier. Time is divided into synchronous rounds; in each round, each node
can send an O(log n)-bit message to each of its neighbors in G. We are interested in the time
complexity of an algorithm, which is defined as the number of rounds that are required until all
nodes terminate.

For simplicity, we assume that all nodes know the maximum degree ∆ ofG. In all our algorithms,
one can replace the value of ∆ by a polynomial upper bound, without changing the asymptotic
results. We note that at the cost of a slightly more complicated algorithm, the knowledge of n and
∆ can also be dropped completely. If the edges of G have weights, we assume that we > 0 is the
weight of edge e. We assume that the weights are normalized such that for all e ∈ E, we have
0 < we ≤ 1. We further assume that the nodes know a value W such that the smallest weight is at
least 1/W .

Distributed matching: When we say that a distributed algorithm computes a matching, we
mean that when the algorithm terminates, each node of the graph knows which of its edges is in
the matching (if any). Since the graph is undirected, both endpoints of an edge must agree about
whether it is in the matching or not. For fractional matching, each node knows the value of all of
its edges, and again, both endpoints of the edge agree on its value.

Notation: Let G = (V,E) be an undirected graph. The bipartite double cover of G is the graph
G2 := G×K2 = (V × {0, 1} , E2), where there is an edge between two nodes (u, i) and (v, j) in E2

if and only if {u, v} ∈ E and i 6= j. Hence, in G2, every node u of G is replaced by two nodes (u, 0)
and (u, 1) and every edge {u, v} of G is replaced by the two edges {(u, 0), (v, 1)} and {(u, 1), (v, 0)}.
If G is a weighted graph with edge weights we for e ∈ E, we assume that the bipartite double
cover G2 is also weighted and each edge of G2 has the same weight as the underlying edge in G.
Throughout the paper, log refers to the logarithm to base 2.

5

4 Exact Maximum Matching in Bipartite Graphs

Here we present an O(n log n)-round deterministic algorithm to compute a maximum matching for
a given n-node bipartite graph B. The algorithm is based on the following observation, which
forms the basis for the celebrated Hopcroft-Karp centralized algorithm for maximum matching in
bipartite graphs:

Lemma 4.1 ([18]). Consider a graph G, and let M∗ be a maximum matching in G. Then for any
positive integer ` and any matching M in G, if |M | ≤ (1− 1/`)|M∗|, then there is an augmenting
path of length less than 2` in G w.r.t. M .

From Lemma 4.1 we get an upper bound on the length of the shortest augmenting path remain-
ing for a matching of given size:

Corollary 4.2. If the maximum matching in G has size s∗, and M is a matching of size |M | = i,
then M has an augmenting path of length less than 2ds∗/(s∗ − i)e.

Proof. We can write:

|M | = i = s∗ − (s∗ − i) = s∗

(
1− 1

s∗

s∗−i

)
≤ s∗

(
1− 1

d s∗

s∗−ie

)
.

Therefore, by Lemma 4.1, there is an augmenting path of length less than 2ds∗/(s∗ − i)e.

Note that the length of the shortest remaining augmenting path depends on the size s∗ of the
maximum matching, which we do not know; therefore we use exponentially-increasing guesses for
s∗. If s ≥ s∗, then s/(s− i) ≥ s∗/(s∗ − i), so we can safely use s in place of s∗ when computing an
upper bound on the length of the shortest augmenting path.

The core of our algorithm is a procedure called SetupPath: given an upper bound k on the
length of the shortest augmenting path, SetupPath(k) finds an augmenting path in O(k) rounds.
We describe this procedure below, but before showing how we find an augmenting path, let us
describe the overall structure of the algorithm.

Let s∗ be the size of the maximum matching in G. Our strategy is as follows: we use
exponentially-increasing guesses, s = 1, 2, 4, . . . , 2dlogne, for the size of the maximum matching.
For each guess s, we try to construct a maximum matching, under the “assumption” that s∗ ≥ s.
At each point we store the largest matching found so far. For each value of s, we start with
an empty matching M , and improve it by searching for augmenting paths one-by-one: for each
i = 1, 2, . . . , n− 1, we call SetupPath(2ds/(s− i)e), spending O(s/(s− i)) rounds searching for an
augmenting path of length O(s/(s− i)); if we find one, we apply it to M to increase its size by at
least 1. Note that by Corollary 4.2, if s∗ ≥ s and |M | = i, then indeed there is an augmenting path
of length less than 2ds/(s− i)e. Finally, we compute the size of the resulting matching, replace the
previously-stored matching if the new matching is larger, and move on to the next guess s.

For each value of s, the time spent constructing a matching is bounded by:

n−1∑
i=1

O

(
s

s− i

)
= O(s log s) = O(s log n).

Therefore, the total running time of the algorithm is
∑dlogne

t=1 O
(
2t log n

)
= O (n log n).

Now let us explain how we find each augmenting path.

6

4.1 Setting Up an Augmenting Path: Procedure SetupPath

Our goal now is, given an upper bound 2k + 1 on the length of the shortest augmenting path, to
find an augmenting path, in O(k) rounds. The algorithm uses k rounds to find an augmenting
path, another k rounds to inform all nodes on the path, and a final k rounds to confirm that the
path was successfully set up.

4.1.1 Finding the path

In this part of the algorithm, free nodes try to propagate their IDs along alternating paths until
they “meet” another free node; at this point an augmenting path is detected.

Each node u maintains variables srcu, predu which keep track of the source of an alternating
path going through u, and the predecessor of u along that path, respectively. Initially, if u is a free
node, then srcu = u, and otherwise srcu = ⊥. We also initialize predu = ⊥ (regardless of whether
u is free or not).

Each node also has a state, stateu, initially set to active.
In each round r = 1, . . . , k, each node u with stateu = active does the following:

• If srcu 6= ⊥:

– If r is odd, then u sends srcu along all its free edges.

– If r is even, then u sends srcu along its matched edge, if it has one.

In both cases, node u sets stateu ← inactive.

• If srcu = ⊥, and node u receives messages w1, . . . , wt from neighbors v1, . . . , vt, respectively,
then it sets srcu ← miniwi and predu to be the neighbor that sent miniwi (or an arbitrary
one of them, if there is more than one).

• If in the current round node u sent a message to neighbor v, and also received a message from
v, then u sets stateu ← detected . Also, node u sets partneru to the smallest such neighbor
v, and it sets indexu to the round number r. Finally, it sets pidu to (r, {srcu, srcv} , {u, v})
where v = partneru and srcv is the value node v sent to u in the current round.

Let πu be the path defined by tracing backwards along the pred variables: πu = w0, . . . , w`,
where w0 = u, for each 1 ≤ i < ` we have wi = predwi−1

, and predw`
= ⊥. (Note that because each

node only sends out a message in one round, and predv is always a neighbor from which v received
a token, the pred -pointers are acyclic.)

In the sequel, note that each node u sets each variable predu or srcu at most once throughout
the whole execution. Moreover, the value of any variable xu for node u at time t is denoted by
xu(t).

Lemma 4.3. For any u, v ∈ V , if node u sets srcu to v in round t, then v is free, and πu is an
alternating path of length t from u to v.

Proof. By induction on rounds.
In the first round, only free nodes sends their IDs to their neighbors. Therefore, the only nodes

u that set srcu to a value are the ones that are not free but have a neighboring free node. Therefore,
for all such nodes u, πu is an alternating path of length 1, which is the free edge connecting u to
its predecessor (i.e., u’s neighboring free node with minimum ID).

Suppose the claim holds for round t, and consider round t+ 1. Then, due to the claim assump-
tion, let node u set srcu to a value v received from its neighbor w = predu in round t+1. Therefore,
by the algorithm, w should have set srcw to v in round t. Due to the induction hypothesis, v is
free, and πw is an alternating path of length t from w to v.

7

Since πu = uπw, it remains to show that uπw is an alternating path from u to v. All the nodes
in πw have set their predecessors before round t + 1. Then, since u sets predu as well as srcu in
round t + 1, node u cannot be in πw, and consequently uπw is a path. Moreover, based on the
algorithm description, the edges over which w receives v and the edges over which it sends v have
different types (free/matched). Therefore, the first edge in πw and edge {u,w} have different types.
Hence, since πw is an alternating path, πu should also be an alternating path.

Lemma 4.4. Let 2`+1 be the length of the shortest augmenting path. Let v be a free node with the
smallest ID that has an augmenting path of length 2`+ 1, and let u be the smallest-ID free node to
which v has an augmenting path P of length 2` + 1. Then, at time ` + 1 the two endpoints of the
middle edge of P detect a shortest augmenting path.

Proof. Let us name the nodes in P as 〈v = v0, v1, . . . , v` = u`+1, v`+1 = u`, . . . , u1, u0 = u〉, where
v < u. In the sequel, we inductively show that for all t, where 0 ≤ t ≤ `, nodes vt and ut respectively
send v and u to vt+1 and ut+1 in round t+ 1. Then, it follows that v` and u` detect an augmenting
path at time ` + 1 by respectively sending v and u to each other in round ` + 1. Since v0 and u0

are free, based on the algorithm, they respectively send srcv0 and srcu0 (i.e., their IDs) over their
adjacent free edges and in particular to v1 and u1 respectively in the first round. Now, regarding
the induction hypothesis, let us assume that for an integer t, where 0 < t < `, vt and ut respectively
send v and u to vt+1 and ut+1 in round t+ 1. Then, we prove the claim for vt+1 and ut+1.

To do so, we first show that t+ 1 is the first round that vt+1 and ut+1 receive IDs (i.e., their src
variables have been ⊥ while receiving in round t+ 1). For the sake of contradiction, let us assume
that round r is the first round that vt+1 receives an ID, where r < t+ 1. Then, vt+1 sets srcvt+1 in
round r, and due to Lemma 4.3, πvt+1 is an alternating path of length r < t+ 1 from vt+1 to some
free node. Since edges {vt, vt+1} and {vt+1, vt+2} have different types, it is trivial to see that the
concatenation of πvt+1 and one of paths P [v, vt+1]2 or P [u, vt+1] is an alternating walk of length less
than 2`+ 1 starting and ending with free nodes. Without loss of generality, let us assume that the
concatenation of πvt+1 and P [v, vt+1] is an alternating walk and is denoted by P ′. Then, if srcvt+1

is v, it leads to the existence of an odd cycle and contradicts the fact that the graph is bipartite.
Otherwise, if srcvt+1 6= v, all the nodes in P [v, vt+1] have set their src variables to v, while all the
nodes in πvt+1 have set their src variables to a different value than v. Therefore, P [v, vt+1] and
πvt+1 do not share any node, and consequently P ′ is an augmenting path of length less than 2`+ 1,
contradicting the choice of `. It is similar to prove the same for ut+1.

Now let us show that among the IDs received by vt+1 and ut+1 in round t + 1, the minimum
ones are v and u respectively. For the sake of contradiction, let us assume that ut+1 receives w that
is smaller than u from its predecessor x in round t + 1. Therefore, x should have set srcx to w at
time t. Then, based on Lemma 4.3, πx is an alternating path of length t from x to w. Considering
the induction hypothesis and the choice of x, node ut+1 receives tokens over both edges {ut, ut+1}
and {x, ut+1} in the same round. Therefore, both the edges should have the same type and in
particular are free edges. Hence, if w = v, the concatenation of πx, {x, ut+1} and P [v, ut+1] is an
alternating walk starting and ending with the same free node, i.e., v. This shows the existence of an
alternating cycle of odd length, which contradicts the fact that the graph is bipartite. Otherwise,
if w 6= v, then the concatenation of πx, {x, ut+1} and P [v, ut+1] is a shortest augmenting path of
length 2`+ 1 between v and w, where w < u. This contradicts the choice of u. As a result among
the IDs received by ut+1, u is the smallest one. It is also similar to prove that among the IDs
received by vt+1, v is the smallest one.

2For any nodes a and b in a path P , P [a, b] denotes the subpath of P starting with a and ending with b.

8

We showed that t + 1 is the first round that vt+1 and ut+1 receive IDs, and among which v
and u are respectively the minimum IDs they receive in that round. On the other hand, by the
induction hypothesis, vt and ut send v and u to vt+1 and ut+1 respectively in round t. Then, since
{ut, ut+1} and {ut+1, ut+2} have different types and ut+1 receives IDs over edges with the same
type as {ut, ut+1}, then by the algorithm, ut+1 sends u over {ut+1, ut+2} in round t+ 2. The same
is similarly true for vt+1. As a result, v` and u` send v and u to each other in round ` + 1 and
detect a shortest augmenting path.

4.1.2 Informing the nodes on the path

Once an augmenting path is detected, the center edge attempts to recruit all path nodes and set
up the augmenting path, by reversing the BFS through following the pred variables. We assume
some pre-determined ordering � on unordered pairs of node identifiers, which will be used to break
ties between augmenting paths of the same length going through the same node. We extend � to
N× V 2 × V 2 using the lexicographic order.

This phase takes ` rounds. In the first round, each node u with state stateu = detected sends
a message (setup, u, 2, pidu) to srcu. Each node v that receives a (setup, w, i, p) message checks if
p � pidv, and if so, it sets pidv ← p, index v ← i, succv ← w. In each subsequent round, nodes v
that have pidv 6= ⊥ send a message (setup, v, index v + 1, p) to neighbor srcv, and all nodes update
pid , index , succ to according to the path with the smallest path-ID they have heard of.

An easy induction, together with Lemma 4.3, shows that at any time t, if variable pidu =
(`, {w1, w2} , {w3, w4}), then there is a length-` augmenting path between w1, w2 whose center edge
is {w3, w4}.

Lemma 4.5. Let `, u, v be as in Lemma 4.4, and let w0, . . . , w2`+1 be the augmenting path of length
2`+ 1 between u and v that minimizes {u, v, w`, w`+1} with respect to the ordering �. Then at each
time 0 ≤ t ≤ `, each node w ∈ {w`−t, w`+t+1} has pidw(t) = (`, {u, v} , {w`, w`+1}), indexw = t+ 1,
and if t > 0, then succw`−t

(t) = w`−t−1(t) and succw`+t+1
= w`+t.

Proof. By induction on time. For t = 0 the claim holds trivially. For t > 0, the claim is preserved
by the fact that nodes propagate the smallest path ID they have heard of, and increment the index;
since there does not exist an augmenting path with smaller path ID in the entire graph, the path
(`, {u, v} , {w`, w`+1}) succeeds in propagating.

Definition 4.1. We say that an augmenting path w0, . . . , w2`+1 is properly set up if for each
0 ≤ t ≤ `, each node w ∈ {w`−t, w`+t+1} has pidw = (`, {u, v} , {w`, w`+1}), indexw = t+ 1, and if
t > 0, then succw`−t

= w`−t−1 and succw`+t+1
= w`+t.

Corollary 4.6. Let `, u, v, w0, . . . , w2`+1 be the nodes from Lemma 4.5. Then following the setup
phase, the path w0, . . . , w2`+1 is properly set up.

4.1.3 Confirming the path

In the previous phase, some augmenting paths may fail to propagate along their entire length, if
they are cut off by an augmenting path with a smaller path ID. To erase such partially-set-up
paths, we have one last phase, where the endpoints of a successfully-set-up path inform all nodes
on the path that it was successfully set up. To do this, any (free) node u with pidu 6= ⊥ sends out
a message (confirm, u, pidu) to its successor succu on the path, and the message is forwarded by all
nodes on the path (each node sends it to its own successor), if their path ID matches it. After `
rounds, any node v that has pidu 6= ⊥ but has not received a (confirm, pidv) from both endpoints
of the path (which it can determine from the path ID) deletes the path, setting pidv ← ⊥.

9

Lemma 4.7. Let `, u, v, w0, . . . , w2`+1 be the nodes from Lemma 4.5. Then during the confirmation
phase, no node wi (0 ≤ i ≤ 2`+ 1) deletes the path (`, {u, v} , {w`, w`+1}).

Proof. By induction on time. This claim follows from Corollary 4.6: since the path is properly set
up.

Corollary 4.8. At the end of the confirmation phase, for any node w, if pidw 6= ⊥, then w is part
of a properly set up augmenting path.

4.2 Augmenting the Matching

At the end of procedure SetupPath, each node u of the graph knows whether it participates in a
properly set-up augmenting path, and if so, its neighbors along the path (succu and predu, or just
succu if u is an endpoint of the path). We now augment the matching: for an inner node u with
neighbors w, z along the path, one of the edges, say {u,w}, is in the matching, and the other, {u, z}
is not. Node u now throws {u,w} out of the matching, and adds {u, z} instead. (Node z will also
add {u, z} from its side, preserving consistency.) For a free node u, with a neighbor w along the
path, we add {u,w} to the matching.

5 Fractional Matching Approximation

We first describe a distributed approximation scheme for the weighted fractional matching problem.
The algorithm is based on distributed algorithm for general covering and packing linear programs,
which appeared in [20]. Further, the distributed algorithm in [20] itself is based on a sequential
fractional set cover algorithm by Eisenbrand, Funke, Garg, and Könemann [9].

Reduction to the Bipartite Case: We first show how to reduce the problem of computing a
fractional (weighted) matching for a general graph G to the fractional maximum matching problem
on two-colored bipartite graphs.

Lemma 5.1. Let G = (V,E) be a graph with positive edge weights we ≥ 0 for all e ∈ E and let
H = (V × {0, 1} , EH) be the bipartite double cover of G.

(1) Let x be a fractional matching of G and let y be an edge vector of H such that for every edge
{(u, i), (v, 1− i)} of H, y{(u,i),(v,1−i)} = x{u,v}. Then, y is a fractional matching of H of size∑

e∈EH
weye = 2 ·

∑
e′∈E we′xe′.

(2) Let z be a fractional matching of H and let y be an edge vector of G such that for every edge
{u, v} of G, y{u,v} = (z{(u,0),(v,1)} + z{(u,1),(v,0)})/2. Then y is a fractional matching of G of

size
∑

e∈E weye = 1
2 ·
∑

e′∈EH
we′ze′.

Proof. Follows immediately from the definition of the bipartite double (cf. Section 3).

In order to compute an approximate fractional matching on a graph G, it therefore suffices to
compute an approximate fractional matchign for the bipartite double cover H of G. Note that
communication on H can be efficiently simulated on the actual network graph G and in particular,
a CONGEST algorithm on H can be run in the CONGEST model on G.

10

5.1 Distributed Algorithm for 2-Colored Bipartite Graphs

In the following, we assume that we are given a weighted bipartite graph B = (V0∪̇V1, E, w) for
which the bipartition is given (i.e., a node knows whether it is in V0 or in V1). We further define
V := V0∪V1 to be the set of all nodes. Using Lemma 5.1, solving the problem on 2-colored bipartite
graphs is sufficient to solving the problem on general graphs.

Formulation as a Linear Program: The maximum weighted fractional matching problem can
be phrased as a packing linear program (LP). As it will be convenient to describe our algorithm, we
use the following non-standard way to describe the maximum matching problem as an LP. Consider
some fractional matching z that assigns a value ze ≥ 0 to each edge e ∈ E. Instead of directly
computing the variables ze, we make a simple change of variable and we assign a value ye ≥ 0 to
each node such that ye = we · ze. In terms of the variables ye, we then obtain the following packing
LP:

max
∑
e∈E

ye s.t. ∀v ∈ V :
∑

e∈E:v∈e

ye
we
≤ 1 and ∀e ∈ E : ye ≥ 0. (1)

After solving (1), we obtain a weighted fractional machting z of the same quality by setting ze :=
ye/we for each edge e ∈ E. The dual covering LP of (1) is defined as follows:

min
∑
v∈V

xv s.t. ∀e = {u, v} ∈ E :
xu
we

+
xv
we
≥ 1 and ∀v ∈ V : xv ≥ 0. (2)

Note that (2) is a variation of the fractional vertex cover LP. We will design an algorithm that
solves (2) and (1) at the same time. The algorithm is based on an adaptation of the greedy set
cover algorithm (the vertex cover problem is a special case of the set cover problem). It is therefore
most natural to think of the algorithm primarily as an algorithm for solving (2).

The Distributed Fractional Matching Algorithm: Our algorithm has a real-valued parameter
α > 1 and an integer parameter f ≥ 1. The values of both parameters will be fixed later. Recall
that we assume that all edge weights we are normalized and the node know a value W ≥ 1 such
that 1/W < we ≤ 1 for all edges e ∈ E.

The algorithm maintains a variable xv ≥ 0 for each node v ∈ V and variables ye ≥ 0 and
re ∈ [0, 1] for each edges e ∈ E. Initially, we set xv := 0, ye := 0, and re := 1 for all nodes v ∈ V
and all edges e ∈ E. Throughout the algorithm, the values of xv and ye only increase and the value
of re only decreases. We further define a generalized notion of the degree of a node as follows:

∀v ∈ V : γ(v) :=
∑

e∈E:v∈e

re
we

and γ̂(v) := max
u∈{v}∪N(v)

γ(u). (3)

As already mentioned, our fractional matching algorithm is a natural adaptation of the fractional
set cover algorithm of Eisenbrand, Funke, Garg, and Könemann [9]. The algorithm consists of
phases. A node v ∈ V participates in the next phase as long as γ(v) > 0. A node terminates
as soon as γ(v) = 0. Algorithm 1 gives the details of a single phase of the fractional matching
algorithm.

Before analyzing the algorithm in detail, we make some simple observations. First note that
whenever we increase some variable xv by 1, in line 8, we make sure that the total increase to
the edge variables ye is also equal to 1. The increase of the variables ye is proportional to their
contribution to the generalized node degree γ(v). At the end, we therefore have

∑
v∈V xv =∑

e∈E ye.
Further, consider some node v ∈ V and some edge e that is incident to v. Each time, we

increase xv by 1, we divide re by a factor α1/we . We set re = 0 as soon as re becomes less than

11

1 for i ∈ {0, 1} do
2 for all v ∈ Vi in parallel do
3 if γ(v) > 0 then
4 θv := γ̂(v)/α;
5 while γ(v) ≥ θv do
6 xv := xv + 1;
7 for all e ∈ E : v ∈ e do

8 ye := ye + re/we

γ(v) ;

9 re := re/α
1/we ;

10 if re ≤ α−f then
11 re := 0

Algorithm 1: A single phase of the fractional matching algorithm

α−f at the end of the algorithm, for every edge e = {u, v}, we therefore have xu + xv ≥ we · f
and thus xu

we
+ xv

we
≥ f . Hence, all inequalities of the LP (2) are “over-satisfied” by a factor at

least f and we can therefore obtain a feasible solution x′ for LP (2) by setting x′v := xv/f . The
solution y for the fractional matching LP (1) is feasible. In order to obtain a feasible solution y′,
we compute the value Yv :=

∑
e∈E:v∈e

ye
we

for each nodes v and for each edge e = {u, v}, we set
y′e := ye/max {Yu, Yv}. By LP duality, the optimal solutions of (1) and (2) have the same values
and we can therfore lower bound the approximation ratio of our fractional matching algorithm by
the ratio f/maxv∈V Yv ≤ 1. The following lemma and corollary show that for suitable choices of
the parameters α and f , this ratio can be made arbitrarily close to 1.

Lemma 5.2. At the end of running the above fractional weighted matching algorithm, for all nodes
v ∈ V , we have

Yv ≤
α2

α− 1
·
(

ln(W∆) + (f + 1) lnα
)
.

Proof. Let v ∈ V be some node of the bipartite graph B = (V0∪̇V1, E). We study how the value Yv
increases as the value γ(v) decreases. Consider some edge e = {u, v} ∈ E that is incident to v such
that the variable ye contributes to the value of Yv. The variable ye is increased whenever either xu
or xv is incremented by 1. Consider such an event and let y+

e be the amount by which ye increases.
Similarly, let Y +

v = y+
e be the amount by which Yv increases through increasing ye and let r−e be

the amoung by which re decreases. Finally, let γ−(v) be the amount by which γ(v) decreases by
incrementing either xu or xv. Let w ∈ {u, v} be the node for which xw is incremented by 1. Note
that because the nodes in V0 and V1 increment their x-variables in separate parts of a phase (cf.
the outer two for-loops), it is not possible that xu and xv are incremented at the same time. We
have

y+
e =

re/we
γ(w)

≤ α · re/we
γ(v)

=
α1/we

α1/we − 1
· α

γ(v)
· r
−
e

we
≤ α2

α− 1
· 1

γ(v)
· r
−
e

we
.

The first inequality follows because either w = v or if w = u, u only increases its xu-variable as
long as γ(u) ≥ γ(v)/α. The second inequality follows because we assume that all edge weights are
between 0 and 1 and therefore α1/we/(α1/we − 1) ≤ α/(α− 1) holds because α > 1.

Decreasign re by an amount of r−e decreases the value of γ(v) by r−e /we. As this is true for
every edge that is incident to v, we can rewrite the above inequality as

Y +
v ≤

α2

α− 1
· 1

γ(v)
·
∑

e∈E:v∈e

r−e
we

=
α2

α− 1
· γ
−(v)

γ(v)
≤ α2

α− 1
·
∫ γ(v)

γ(v)−γ−(v)

ds

s
.

12

The last inequality follows because the function 1/s is monotonically decreasing for s > 0. The
above integral formulation can now easily be extended to the overall increase of Yv from the be-
ginning of the algorithm (when Yv = 0) to the end of the algorithm. Right before all re-variable of
the edges incident to v are set to 0 in line 11, the smallest value that γ(v) can have is larger than
α−(f+1). At the start of the algorithm, the value of γ(v) is upper bounded by W∆ of B. We can
therefore upper bound Yv at the end of the algorithm by

Yv ≤
α2

α− 1
·
∫ W∆

α−(f+1)

ds

s
=

α2

α− 1
·
(

ln(W∆) + (f + 1) lnα
)
.

Corollary 5.3. Let ε ∈ (0, 1/2] be a parameter. By choosing α = 1 + ε/c and f = 2c · ln(∆W)/ε2

for a sufficiently large constant c, the above fractional matching algorithm can be used to compute
a (1− ε)-approximate fractional weighted matching in an arbitrary weighted graph G = (V,E).

Proof. We first use Lemma 5.1 to transform the fractional matching problem on an arbitrary graph
G to the fractional matching problem on a 2-colored bipartite graph B = (V0∪̇V1, EB). As discussed
above, the approximation ratio of the algorithm is at least f/maxv∈V Yv. By Lemma 5.2, we have

α2

α− 1
· (ln(W∆) + (f + 1) lnα) ≤ e2ε/c ·

(
ln(W∆)

ε/c
+ f + 1

)
.

By choosing c sufficiently large, the above expression is upper bounded by 1 + ε ≥ 1/(1− ε).

It remains to bound the time complexity of the algorithm in the distributed setting.

Lemma 5.4. The described fractional weighted matching algorithm can be implemented in O(f +
logα(W∆)) rounds in the CONGEST model.

Proof. We first show that a single phase of the algorithm (as described in Alg. 1) can be implemented
in O(1) rounds and we then upper bound the required number of phases.

To see the time required to execute a single phase, note that we increase the x-variables of nodes
in V0 and V1 separately. Consequently, whenever we increase x-variables in parallel, for each edge
{u, v} ∈ E, at most one of the nodes u and v increases its x-variable. Hence, inside the while loop
starting in line 5, node v has complete control over the change to ye and re for its incident edges.
The iterations of the while loop can therefore be carried out without communication. The nodes
only need to communicate the final changes to the variables ye and re at the end of the while loop.
A single phase can therefore be executed in O(1) rounds in the CONGEST model.

To bound the number of phases, we define Γ := maxv∈V γ(v). Note that in each phase Γ
decreases by at least a factor of α. As discussed above (in the proof of Lemma 5.2, at the beginning
Γ ≤W∆ and at the very end, before each γ(v) = 0, we have Γ ≥ α−(f+1). The required number of
phases is therefore O(logα(W∆) + f).

Together with Corollay 5.3, Lemma 5.4 directly proves Theorem 1.2.

6 Deterministic Rounding of Fractional Matchings

For rounding the obtained fractional matching from Section 5, we adapt the technique by Manuela
Fischer in [11]. In [11], Fischer shows how to round a fractional matching to an integral matching
at the cost of losing a non-trivial constant factor (in the unweighted and in the weighted case). We
show that a simple adaptation of the algorithm allows to keep the loss within a (1 + ε)-factor in

13

the unweighted bipartite case. We further show that the method can also be generalized to the
weighted bipartite case while only losing a (1 + ε)-factor in the rounding.

Normalizing the Fractional Matching: As for the fractional maximum matching problem in
Section 5, we first solve the problem in 2-colored bipartite graphs, and we then show how to extend
the solution to general graphs. The following lemma further shows that we can assume that we
start with a normalized fractional matching where all the fractional edge values are of the form 2−i

for some integer i ≥ 0.

Lemma 6.1. At the cost of at most an ε-fraction of an optimal matching, the problem of rounding a
weighted fractional matching y of a graph G with maximum degree ∆ can be reduced to the problem
of rounding a weighted fractional matching y′ on a multigraph G′ such that for all edges e of G′,
we have y′e = 2−i for some non-negative integer i = O

(
log(∆/ε)

)
.

Proof. Let k be the smallest integer such that 2k ≥ log(∆/ε). Given a weighted graph G = (V,E),
we construct a weighted multigraph G′ = (V,E′) as follows. G′ is obtained from G by replacing
each edge e ∈ E with k + 1 identical copies e0, . . . , ek of e. If e has weight we in G, we also set
wei = we for the corresponding k + 1 parallel edges in G′.

Assume that we are given a fractional matching y assigning a fractional value ye ∈ [0, 1] to
each edge e ∈ E. We obtain a fractional matching z of G′ as follows. For each edge e ∈ E, we
define y′e := b2k · yec/2k. Note that y′e ≤ ye and thus y′ is a valid fractional matching of G. Note
further that y′e can be written as y′e :=

∑k
i=0 βi · 2−i, where βi ∈ {0, 1}. We define zei := βi · 2−i.

Clearly, z is a fractional matching of G′. The total value of the fractional weighted matching
is
∑

e∈E wey
′
e ≥

∑
e∈E we(ye − 2−k) ≥

∑
e∈E weye −

ε
∆ ·
∑

e∈E we. The claim of the lemma now
follows because an optimal fractional weighted matching of G (and also G′) has value at least
1
∆ ·
∑

e∈E we.

Basic Rounding Strategy: We use the same basic rounding approach as Fischer [11]. In the
following, we assume that we are given a biparite (multi-)graph B = (V0∪̇V1, E) and a normalized
fractional matching y that assigns a value ye = 2−i for some integer i ≥ 0 to each edge e ∈ E. For
convenience, let Ei be the set of edges e ∈ E for which ye = 2−i and let Bi := (V0∪̇V1, Ei) be the
subgraph of B induced by the edges in Ei. Assume further that k is the largest integer such that
Ek 6= ∅, i.e., for which there is some edges e ∈ E with ye = 2−k. For a given parameter δ > 0, we
describe a rounding algorithm that rounds each edge e ∈ Ek either to value 0 or to value 2−(k−1)

such that the total value of the fractional (weighted) matching does not decrease by more than a
factor 1− δ.

In order to do the rounding of the edges in Ek, we define a virtual graph B′k as follows. For
each node v ∈ V , let dk(v) be the number of edges in Ek that are incident to v. If dk(v) ≥ 1,
we create sv := ddk(v)/2e virtual nodes v1, . . . , vsv and we arbitrarily divide the dk(v) edges in Ek
that are incident to v among the nodes v1, . . . , vsv such that each node vi receives at most two such
edges (i.e., if dk(v) is even, all virtual nodes vi get two edges and if dk(v) is odd, one of the virtual
nodes gets one edge and the others get two edges). Note that the graph B′k has maximum degree
2 and because B′k is bipartite, it means that it consists of disjoint paths and even cycles. The next
lemma shows that we can use an arbitrary matching of B′k to select the set of edges in Ek, which
are rounded up to value 2−(k−1).

Lemma 6.2. Let M ′k be a matching of the graph B′k and let Mk the corresponding subset of edges
of Ek. Further, let y′ be obtained from the fractional matching y of B by setting y′e = ye for all
e 6∈ Ek, y′e = 2ye for all e ∈ Mk and y′e = 0 for all e ∈ Ek \Mk. Then y′ is a valid fractional
matching of B.

14

Further, if the total weight of M ′k is at least (1− δ)/2 of the total weight of B′k for some δ ≥ 0,
the total weight of y′ is at most a (1− δ)-factor smaller than the total weight of y.

Proof. The second part of the lemma follows immediately because we round up (i.e., double) the
fractional matching values corresponding to a (1− δ)/2-fraction of the total weight of B′k

We need to show that at each node v ∈ V , the sum of the fractional matching values y′e of the
edges e incident to v does not exceed 1. Consider the sv = ddk(v)/2e virtual nodes vi in B′k. For
each of the bdk(v)/2c virtual nodes of degree 2, at most one of its incident edges is rounded up to
2−(k−1) and at least one of its incident edges is rounded down to 0. Hence, for those virtual nodes,
the total sum of the values y′e is upper bounded by the total sum of the corresponding values ye.
If dk(v) is odd, there is one virtual node vi of degree 1 in B′k and the edge incident to vi might be
rounded up to 2−(k−1). Hence, if dk(v) is odd, we can only guarantee that∑

e∈E:v∈e
y′e ≤ (2−(k−1) − 2−k) +

∑
e∈E:v∈e

ye = 2−k +
∑

e∈E:v∈e
ye.

We need to show that this value does not exceed 1. Recall that for all e ∈ E, we have ye = 2−i for
some i ∈ {0, . . . , k}. The sum

∑
e∈E:v∈e ye is therefore an integer multiple of 2−k and since dk(v) is

odd, we have
∑

e∈E:v∈e ye = a · 2−k for an odd integer a > 0. As y is a valid fractional matching of
B, we can therefore conclude that

∑
e∈E:v∈e ye ≤ 1−2−k, which proves the claim of the lemma.

We note that the above rounding of edges is the main difference between the approach of [11]
and our algorithm. In [11], to be on the safe side, the fractional matching value of the edge incident
to a virtual node of degree 1 is always rounded down unless the total fractional matching value at
the respective node is far from 1. The small and simple change makes the rounding more efficient
and it will later also make it easier to argue that the rounded matching is not much smaller than
the original matching. The more general rounding provided by Lemma 6.2 will in particular make
it much easier to round weighted fractional matchings. Lemma 6.2 implies that rounding fractional
matchings to integral matchings essentially boils down to computing almost maximum (weighted)
matchings in graphs of maximum degree 2 (i.e., in paths and cycles).

Approximating Maximum Matching in Paths and Cycles: As discussed above, Lemma 6.2
essentially reduces the problem of rounding (weighted) fractional matchings to solving the weighted
maximum matching problem in paths and cycles.

Lemma 6.3. Let G = (V,E) be a weighted n-node graph with maximum degree 2 and assume that
W is the total weight of all edges of G. Let δ > 0 be a parameter, and let g be the length of the
shortest odd cycle of G.3 In the CONGEST model, a matching of weight at least g−1

g · (1− δ) ·W/2
can be computed in time O

(
1
δ · log∗ n

)
.

If G = (V0∪̇V1, E) is a bipartite graph for which the bipartition (V0, V1) is given, there is O(1/δ)-
time algorithm that computes a matching of total weight at least (1− δ)W/2.

Proof. We can clearly compute an approximate maximum matching independently for each com-
ponent of G. Let us therefore consider a single component H = (VH , EH) of G of size k. The graph
H is either a path of length k or a cycle of length k. Note first that if k = O(1/δ), we can compute
an optimal weighted matching in k = O(1/δ) rounds in the CONGEST model. By using pipelining
(in both directions), each node of H can learn the whole structure of H in k rounds. Note that
every weighted path and every weighted even cycle has a matching of total weight at least half of
the total weight of the path or cycle. For an odd cycle of total weight W , we get a matching of

3Note that if G is bipartite, we have g = ∞.

15

weight (g− 1)/2g ·W by first removing an adge of smallest weight and then computing an optimal
weighted matching of the remaining path.

Let us therefore assume that k ≥ C/δ for a sufficiently large constant C. For an integer `,
1 ≤ ` < k, we define an edge e of H to be `-light if there exists a subpath P of H of length ` such
that e ∈ P and such that we is at most a 1/`-fraction of the total weight of P . Note that every
subpath of length 2` of H has at least one `-light edge and thus two `-light edges can be separated
by at most 2` hops. Note further that in unweighted graphs, every edge is `-light (for every `).

The idea of approximating maximum weighted matching in long paths and cycles is to select a
sufficiently sparse set of light edges, remove the edges from H and solve the maximum matching
problem optimally on the remaining paths. To prove the first part of the lemma, we set ` := d1/δe
and we compute a set L of `-light edges satisfying the following properties: Any two edges in L
are separated by at least 2` hops and all components (paths) of H \L are of size O(`). We can for
example compute a maximal subset L of the `-light edges of H such that any two edges in L are
separated by at least 2` hops. Such a set L can be computed in time O(` log∗ n) = O(log∗(n)/δ)
by using standard methods based on the techniques in [5]. Let WL be the total weight of the edges
in L. By computing (in time O(1/δ)) an optimal weighted matching for all the paths we get after
removing the edges in L, we obtain a matching of weight at least (W −WL)/2. Because the edges
in L are sufficiently separated, we know that WL ≤ W/` = δW . The resulting matching thus has
size at least (1− δ)W/2.

For the second part of the lemma, we generalize a technique that has been previously been used
in [11] and [16] for unweighted matchings. As before, we can restrict the attention to a single path
or cycle H of length at least k ≥ C/δ for a sufficiently large constant C. Let U0 and U1 be the two
color classes of the given 2-coloring of H. In the following, we will orient each edge of H either
from U0 to U1 or vice versa. For convenience, let us call an edge blue if it is oriented from U0 to
U1 and let us call an edge red if it is oriented from U1 to U0. We will maintain the total weight
of all blue edges is always at least as large as the total weight of all red edges. Let EL be the
set of `-light edges for ` := d4/δe. Initially, we color all edges in EL blue, i.e., we orient all these
edges from U0 to U1. The remaining edges form paths of length at most O(`) = O(1/δ). In time
O(1/δ), we can alternatingly color these paths red and blue such that the total weight of the blue
edges of each of these paths is at least as large as the total weight of the red edges. Let P be the
maximal consistently oriented subpaths of H (i.e., P is the set of maximal alternatingly colored
paths). We proceed in phases i = 0, 1, 2, . . . , dlog 2`e. In phase i, we only work on the maximal
consistently oriented subpaths of length at most 2i. The objective of phase i is to guarantee that
at the end of the phase, there are no two adjacent maximal subpaths of length at most 2i. We
prove how to achieve this guarantee by induction on i. Clearly, at the beginning of phase 0, there
are no two adjacent subpaths of length at most 2−1 < 1. It is therefore sufficient to prove that if
at the beginning of a phase i, there are no two adjacent subpaths of length at most 2i−1, we can
guarantee that at the end of the phase, there are no two adjacent subpaths of length at most 2i.

Let us now decribe phase i. Let Pi be the set of subpaths of length at most 2i. We pair adjacent
paths of Pi as follows. We pair any two ajacent paths that are oriented towards each other. This
guarantees that for every sequence of adjacent paths in Pi, all paths except possibly the paths
at the beginning and the end of the sequence are paired. In each pair of paths, we reverse the
direction of one of the paths. We can always do this such that the total weight of the blue edges
is still at least as large as the total value of the red edges. Because at the beginning of the phase,
there are no two adjacent subpaths of length at most 2i−1, each of the pairs of paths has a total
length that exceeds 2i−1. Hence, if we now again consider the new set of subpaths of length at
most 2i, in any sequence of adjacent such paths, all the inner paths are of length more than 2i−1.
Further, if the first or last path of such a sequence is shorter, then it is oriented towards the outside

16

(towards the neighboring long path). If we do the same kind of pairing again and path reversal
again, we therefore get to a situation, where there are no two adjacent subpaths of length at most
2i. The total time to implement phase i in the CONGEST model is linear in 2i. The total time
to implement all dlog 2`e phases is therefore linear in `. At the end, there are not two adjacent
maximal consistently oriented subpaths of length at most 2`.

We now determine the matching of H as follows. First note that there cannot be more than three
adjacent blue edges because this would imply two adjacent maximal consistently oriented subpaths
of length 1. Further, for any node v for which both incident edges are not `-light, the two edges
are consistently oriented at the beginning and because we always reorient maximal consistently
oriented paths, they remain consistently oriented to the end. Hence, one of these edges needs to
be blue and the other one needs to be red. Therefore, whenever there are two adjacent blue edges,
one of these edges needs to be a light edge. Let us therefore define the matching of H to consist
of all the blue edges, except for some `-light blue edges. Among any two adjacent blue edges, we
remove an arbitrary `-light one. Further, if there are three consecutive blue edges, if the middle
edge is `-light, we remove the middle edge and otherwise, we remove the two outer edges (both
of them have to be `-light in this case). Because there are no two adjacent maximal subpaths of
length at most 2`, on any subpath of H of length 2`, there are at most 2 `-light blue edges that are
removed. By the definition of `-light edges, the total weight that we remove from the blue edges is
at most 2/`-fraction of the total weight W of H. The total weight of the matching is therefore at
least W/2− 2W/` ≥ (1− δ)W/2.

Putting the Pieces Together: We now have all the tools that are needed for the rounding and
we can therefore prove Theorem 1.3.

Proof of Theorem 1.3. First of all, we assume that y is at least a 1/3-approximation. If not, one
can directly apply the weighted (2 + ε)-approximation algorithm of [11] to obtain the claim of the
theorem. Because y is at least a 1/3-approximation and because the optimal fractional matching
size is at least

∑
e∈E we/∆, we directly round down matching values that are smaller than ε/(12∆),

i.e., if ye ≤ ε/(12∆), we set ye := 0. This reduces the value of the weighted fractional matching y
at most by a factor (1− ε/4).

Using Lemma 5.1, we now first move to the bipartite double cover of G and by using Lemma
6.1, we create a multi-graph in which all matching values are negative powers of 2. Assume that
the smallest matching value is 2−k. Because all matching values of y are at least ε/(12∆), we have
k = O(log(∆/ε)). We apply k iterations of the basic rounding, each time, we round the edges of
the currently smallest values. In order to lose at most another (1 − ε/4)-factor throughout the k
phases of rounding, we make sure that in each of the k iterations, we only lose a (1−O(ε/k))-factor.
In Lemma 6.2, we therefore have to set δ = O(ε/k) = O(ε/ log(∆/ε)). Because B′k is a 2-colored
bipartite graph, Lemma 6.3 implies that the matching of B′k which is necessary by Lemma 6.2 can
be computed in time O(1/k) = O(log(∆/ε)/ε). After the k steps of rounding, we therefore obtain a
matching of the bipartite double cover H of G of size at least (1− ε/2) times the value of the given
fractional matching of H. When using Lemma 5.1 to transform this matching back to G, we only
obtain a fractional matching of G. However, this fractional matching is half-integral and rounding
it to an integer matching can therefore be achieved by another application of Lemma 6.3. However,
this time, we do not have a 2-coloring of the graph and G might also not be bipartite. The time
for this last rounding step is therefore O(log∗ n/ε) and we lose a factor (1−O(ε)) · g−1

g .

17

7 Lower Bound

7.1 The 2-Player Problem

Let XOR-to-And, or XA for short, be the following problem: the players receive input bits x, y ∈
{0, 1}, respectively, and their goal is to output bits a, b ∈ {0, 1}, respectively, such that a∧b = x⊕y.
That is, if x⊕ y = 1, then both players should output 1, but if x⊕ y = 0, then at least one player
should output 0.

For n ≥ 1, let PXAn,δ be the following problem: the players are given n copies of XA,
x1, y1, . . . , xn, yn, with the promise that for at least n/4 copies i we have xi ⊕ yi = 1, and for
at least 0.49n copies i we have xi ⊕ yi = 0. The goal is to solve each copy with marginal success
probability δ: the players should produce outputs a1,b1, . . . ,an,bn, which we think of as ran-
dom variables depending on the protocol’s internal randomness, such that for each i ∈ n we have
Pr [ai ∧ bi = xi ⊕ yi].

In Section 7.6 below, we show that the randomized communication complexity of PXAn,δ is
Ω((1 − δ)n). However, first we give a reduction from (1 − ε)-approximate maximum fractional
matching in graphs of O(n) vertices to PXAΘ(n/ε),δ, with δ ∈ (1/2, 3/5) a constant that will be
fixed later.

7.2 The Lower Bound Graph

Fix a parameter k ≥ 40εn, and assume for simplicity that n/k is an integer.
Given inputs x, y ∈ {0, 1}k, Alice and Bob construct a graph Gx,y = (V,Ex,y), consisting of

• k paths, each of length 2n/k, denoted π0, . . . , πk−1, where πi = (i, 0), (i, 1), . . . , (i, 2n/k) for
each i ∈ [k].

• A complete binary tree, with n/k + 1 leaves denoted `0, . . . , `n/k. Each leaf `i is connected
to each path node (j, 2i) for j = 0, . . . , n/k. The edges {{`i, (j, 2i)}}j∈[k],i∈[n/k+1] are called
bridges.

• An additional n/k + 1 nodes denoted x0, . . . , xn/k, with an edge {`i, xi} connecting xi to the
tree leaf `i for each i ∈ [n/k + 1]. Nodes x0, . . . , xn/k are called spines.

• For each i ∈ x, Alice appends an edge eAi = {(i, A), (i, 0)} at the beginning of the path πi.

• For each i ∈ y, Bob appends an edge eBi = {(i, B), (i, 2n/k)} at the end of the path πi.

Let πx,yi be the extended path πi, after Alice or Bob either add or do not add their edge to their
respective endpoints of πi. The length of each extended path πx,yi is 2n/k + 1 if xi ⊕ yi = 1, and
either 2n/k or 2n/k + 2 if xi ⊕ yi = 0.

Let us see what Alice and Bob can deduce about Gx,y when they see the result of the algorithm,
that is, a (1− ε)-approximation to the maximum fractional matching.

First we show that we can ignore the bridge edges, by assuming that they receive weight 0.

Lemma 7.1. Let M be any fractional matching in Gx,y. There is a matching M ′, with |M ′| = M ,
such that for any path edge e ∈ πx,yi we have M ′(e) = M(e), but for any bridge edge e we have
M ′(e) = 0.

Proof. We obtain M ′ from M as follows: let `i be a tree leaf such that for at least one bridge
edge {`i, (j, 2i)} we have M({`i, (j, 2i)}) > 0. Since M is feasible, we have

∑
jM({`i, (j, 2i)}) +

M({`i, xi}) ≤ 1. InM ′, set letM ′({`i, (j, 2i)}) = 0 for all j, and we setM ′({`i, xi}) =
∑

jM({`i, (j, 2i)})+
M({`i, xi}). This preserves the total weight of the matching, as well as the total weight edges ad-
jacent to `i.

18

We go through all the bridge edges in this manner until we have zeroed out all their weights.
The weights of internal tree edges and of path edges in M ′ is the same as in M .

Next, we show that any good fractional matching must assign total weight greater than n/k on
at least 1/10-th of all odd-length paths, assuming that at least 1/4-th of the paths in Gx,y have
odd length:

Lemma 7.2. Let M be a (1−ε)-approximation to the maximum matching in Gx,y, and assume that
M assigns no weight to any bridge edges: that is, for all i, j we have M({`i, (j, 2i)}) = 0. Assume
further that Gx,y contains at least k/4 odd-length paths πx,yi . Then M achieves weight greater than
n/k on at least k/10 odd-length paths πx,yi .

Proof. Suppose not, and I, |I| > (1/4− 1/10)k = (3/20)k, be the set of odd-length paths on which
M achieves weight at most k. We abuse notation by thinking of I as both the set of indices i such
that πx,yi has odd length, and also the set of all such path nodes. Similarly, let O be the set of all
odd-length paths, |O| ≥ (1/4)k.

Let M∗ be a maximum fractional matching in Gx,y. By Lemma 7.1, we may assume that M,M∗

assign no weight to the bridge edges; therefore, they are both collections of disjoint fractional
matchings on the tree and the individual paths.

On any even-length path (which has length either 2n/k or 2n/k + 2), M and M∗ can achieve
weight at most n/k + 1, and on odd-length paths (which have length 2n/k + 1) the weight can be
at most n/k + 1/2. Since M∗ is optimal, it indeed achieves these weights. Let t be the weight of
the optimal fractional matching on the tree and spines. Since they contain a total of fewer than
3n/k nodes, we have t < 3n/k. Thus, the total weight achieved by both M and M∗ on Gx,y \ I is
at most t + (k − |O|) · (n/k + 1) + (|O| − |I|) · (n/k + 1/2). And since M∗ is optimal, it actually
achieves this weight.

On the paths in I, we assumed that M achieves a total weight of at most |I| · (n/k), while M∗

achieve weight |I|·(k+1/2) (these are paths of length 2n/k+1). Therefore, |M∗|−|M | ≥ |I|·(1/2) ≥
(3/40)k, and |M∗| ≤ t+(k−|O|) ·(n/k+1)+ |O| ·(n/k+1/2) ≤ 3k−1+(3/4)k ·(n/k+1)+(1/4)k ·
(n/k + 1/2) < 10k + n < 2n. We see that (|M∗| − |M |)/|M∗| ≥ (3/40)k/(2n) > (1/40)(k/n) > ε,
contradicting our assumption that M is a (1− ε)-approximation to the optimum matching.

7.3 The Simulation

Fix a distributed algorithm A that computes an exact maximum matching in the graph family
{Gx,y}x,y{0,1}n in T rounds, where T = n/k − 1. Alice and Bob simulate the execution of A as

follows: at each time t, Alice locally simulates a set StA of nodes, and Bob locally simulates a set
StB, with S0

A ⊃ S1
A ⊃ . . . ⊃ STA and S0

B ⊃ S1
B ⊃ . . . ⊃ STB.

Path nodes. For each 0 ≤ t ≤ T , let

V t
A = [k]× {A, 0, 1, . . . , 2n/k − t} , V t

B = [k]× {B, t, t+ 1, . . . , 2n/k} .

Alice only simulates path nodes in V t
A, and Bob simulates path nodes in V t

B.

Tree nodes. Since the players stop simulating more and more path nodes as the execution
progresses, they are able to locally simulate fewer and fewer tree nodes without assistance from the
other player.

19

Let us denote each tree node by the path from the root, denoted ε, to the node, with 0 denoting
a left turn and 1 denoting a right turn. Let H = dlog(n/k + 1)e be the depth of the tree. In
particular, a leaf `i is denoted by the binary representation of i, with leading zeroes padding the
representation to H bits.

At time t, Alice only maintains local states for the tree leafs

Lt,0A = {`i | 2i ≤ 2n/k − t} .

We define the set of nodes for which Alice stores a local state by induction, with Lt,h+1
A containing

any inner tree node that has at least one child in Lt,hA . Note that Lt,hA is a set of consecutive nodes{
0H−h, . . . , ut,h

}
, where ut,h is the largest such that ut,h0 ≤ ut,h−1. Also, since we remove at most

one leaf from Lt,0A to obtain Lt+1,0
A , at each higher level h > 0 we also remove at most one node

from Lt,hA to obtain Lt+1,h
A .

Consider a node u ∈ Lt,hA for t > 0, h ≥ 0. If u is not the root, then u’s parent is in Lt,h+1
A by

definition, and therefore the parent is also in Lt−1,h+1
A . Therefore Alice knows what message the

parent sent to u in round t− 1. As for the children of u (if h > 0), if u 6= ut,h (i.e., u is not the last

node on level h), then both children are in Lt,h+1
A , and therefore they are also in Lt−1,h+1

A and Alice

knows the messages they send; if u = ut,h, then still, at least one child of u is in Lt,h+1
A and hence

in Lt−1,h+1
A . The other child may not be, and in this case we ask Bob to tell Alice the message this

child sends to node u. There is at most one such child on each level, so the total communication
cost on all levels together is O(B log(n/k)) per round of the simulation.

The simulation for Bob is symmetric, starting with the leafs

Lt,0B = {`i | 2i ≥ t}

and proceeding upwards from there in the same way.
Finally, each player simulates any “spine node” xi where `i is to be simulated by the player in

the next round. This is trivial, because `i is the only neighbor of xi.

7.4 The Players’ Output

Let M : E → [0, 1] be a (1 − ε)-approximation to a maximum fractional matching in Gx,y. For

each path πx,yi = w1, . . . , ws in Gx,y, let πx,yi = ws, . . . , w1 be the inverted path. Also, given a path
π = w1, . . . , ws, let odd(π) = {{w2j+1, w2j+2} | 2j + 2 ≤ s} be the set of odd-numbered edges on
π.

Now,let EiA = odd(πx,yi) be the set of odd-numbered edges on πx,yi , from Alice’s perspective,

and let EiB = odd(πx,yi) be the set of odd-numbered edges on πx,yi , from Bob’s perspective (starting
from the end of the path and going backwards). Note that if πx,yi has odd length, then EiA = EiB,
but if πx,yi has even length, then EiA, E

i
B form a partition of the edges of πx,yi .

Alice produces the following output ai in coordinate i: if there is some edge e ∈ EiA ∩ (V T
A)2

with weight M(e) ≤ 1/2, then Alice outputs 0; otherwise Alice outputs 1. Note that Alice can
check whether there is such an edge, because she knows the final states of all the nodes in V T

A . Bob
does the same, substituting EiB, V

T
B for EiA, V

T
A , respectively.

7.5 Correctness of the Reduction

Lemma 7.3. If πx,yi is of odd length on which |M | achieves weight greater than n/k, then for any
edge e ∈ EiA = EiB we have M(e) > 1/2. On the other hand, if πx,yi has even length, then there is
some edge e ∈

(
EiA ∩ (V T

A)2
)
∪
(
EiB ∩ (V T

B)2
)

with M(e) ≤ 1/2.

20

Proof. Consider the matching M ′ from Lemma 7.1. It agrees with M on all path edges, so it suffices
to show the claim for M ′.

First suppose πx,yi has even length. Recall that V T
A = [k]×{A, 0, 1, . . . , n/k + 1} and V T

B = [k]×
{B,n/k − 1, . . . , 2n/k}. Thus, nodes (i, n/k−1), (i, n/k), (i, n/k+1) are simulated by both players
until the end. SinceM ′ is feasible, eitherM ′({(i, n/k − 1), (i, n/k)}) ≤ 1/2, orM ′({(i, n/k), (i, n/k + 1)}) ≤
1/2, or both. Let e ∈ {{(i, n/k − 1), (i, n/k)} , {(i, n/k), (i, n/k + 1)}} have M ′(e) ≤ 1/2. Note that
e ∈ (V T

A)2 ∩ (V T
B)2. Now recall that since πx,yi has even length, EiA and EiB form a partition of its

edges, so either e ∈ EiA or e ∈ EiB.
Now suppose πx,yi has odd length, 2n/k + 1, and M ′ achieves weight greater than n/k on πx,yi .
Suppose for the sake of contradiction that there is some odd-numbered edge e = {w,w′} ∈ EiA =

EiB with M ′(e) ≤ 1/2. Consider the prefix of πx,yi up to w, inclusive, and the suffix starting from
w′, inclusive. Let L1 be the length of the prefix, and L2 be the length of the suffix. Both are even
(as πx,yi has odd length), so M ′ achieves weight at most L1/2 on the prefix and at most L2/2 on the
suffix. Therefore the total weight M ′ has on πx,yi is (L1 + L2)/2 + M ′(e) ≤ (2nk)/2 + 1/2 = n/k,
a contradiction.

Lemma 7.4. If M is a (1 − ε)-approximation to the maximum fractional matching, then for at
least 0.55k indices i we have ai ∧ bi = xi ⊕ yi.

Proof. By Lemma 7.3, whenever πx,yi has even length, at least one of the players outputs 0. Thus,
whenever xi ⊕ yi = 0, we have ai ∧ bi = 0 as well. Because we are promised that there are at least
0.49k even-length paths, this gives us 0.49k indices on which the output is correct.

As for odd-length paths (xi ⊕ yi = 1), Lemmas 7.2, 7.3 together show that on at least k/10
paths, at least one of the two players “sees”, from their perspective, an odd-numbered edge with
weight ≤ 1/2, because there is such an edge in

(
EiA ∩ (V T

A)2
)
∪
(
EiB ∩ (V T

B)2
)
. Therefore at least

one player outputs 0, that is, ai ∧ bi = 0.
Together, we have at least 0.49k + k/10 > 0.55k indices solved correctly by the protocol.

Corollary 7.5. Given a algorithm for (1− ε)-approximate maximum fractional matching in graphs
of size Θ(n), if the running time of the algorithm is T < 1/(40ε), then there is a protocol with
communication complexity O(T log n) for PXAΘ(εn),0.55.

Proof. Given input x, y to PXA, we scramble the coordinates by applying a random permutation
sampled publicly, then construct the graph Gx,y and simulate the algorithm. As we showed, if we
compute outputs as indicated in Section 7.4, at least a 0.55-fraction of paths are solved correctly.
Because we scrambled the coordinates, each coordinate has marginal probability at least 0.55 of
being solved correctly.

7.6 A Lower Bound on PXA

We now show that there is an input distribution µ on {0, 1}2, such that

IC
µn

(PXAn,δ) = n · (1− 5δ)/40,

and in addition, with probability 1−o(1), at least 0.49 of coordinates have xi⊕yi = 0, and at least
1/4 of coordinates have xi⊕yi = 1. It suffices to have µ(00)+µ(11) ≥ 1/2 and µ(01)+µ(10) > 1/4,
as Chernoff then shows that the probability of having fewer than 0.49 zero coordinates or fewer
than 1/4 one coordinates is exponentially small.

21

By the usual direct sum argument, it suffices to show that

IC
µ,δ

(XA) = (1− 5δ)/40.

Let µ be the uniform distribution on {0, 1}2.
By definition of the information cost,

IC
µ

(Π) = I
µ
(Π; X |Y) + I

µ
(Π; Y |X)

≥ I
µ|Y=1

(Π; X) · Pr
µ

[Y = 1] + I
µ|X=1

(Π; Y) · Pr
µ

[X = 1] ,

where the last step follows because mutual information is non-negative. Thus,

IC
µ

(Π) ≥ 1

2

(
I

µ|Y=1
(Π; X) + I

µ|X=1
(Π; Y)

)
=

1

2

(
Et∼π|Y=1

[
D

(
µ(X|Π = t,Y = 1)

µ(X|Y = 1)

)]
+ Et∼π|X=1

[
D

(
µ(Y|Π = t,X = 1)

µ(Y|X = 1)

)])

≥ 1

2
· 1

2

(
Et∼π11

[
D

(
µ(X|Π = t,Y = 1)

µ(X|Y = 1)

)]
+ Et∼π11

[
D

(
µ(Y|Π = t,X = 1)

µ(Y|X = 1)

)])
, (4)

using the fact that divergence is non-negative. So, for the typical transcript drawn from π11, either
Bob “learns X” or Alice “learns Y” from observing the transcript.

Let us figure out what this means. For any transcript t, we can write

πxy(t) = at(x) · bt(x),

where at, bt : {0, 1} → [0, 1] are functions measuring the player’s contributions to the probability
that t is generated.

For X, the prior given Y = 1 is µ(X|Y = 1) = B1/2. The posterior after seeing Π = t is of
course also Bernoulli, with

µ(X = 1|Π = t,Y = 1) =
µ(X = 1|Y = 1)π11(t)

µ(X = 1|Y = 1)π11(t) + µ(X = 0|Y = 1)π01(t)

=
1
2π11(t)

1
2π11(t) + 1

2π01(t)

=
at(1)bt(1)

at(1)bt(1) + at(0)bt(1)
=

1

1 + at(0)
at(1)

.

Say that t is good if
at(0)

at(1)
≤ 1/2 or

bt(0)

bt(1)
≤ 1/2.

If at(0)/at(1) ≤ 1/2, then

µ(X = 1|Π = t,Y = 1) =
1

1 + at(0)
at(1)

≥ 1

1 + 1/2
=

2

3
.

22

Plugging this in to the divergence, we get that for any good transcript t,

D

(
µ(X|Π = t,Y = 1)

µ(X|Y = 1)

)
≥ D

(
2/3

1/2

)
=

2

3
log

(
2/3

1/2

)
+

1

3
log

(
1/3

1/2

)
> 1/20.

Similarly, if bt(0)/bt(1) ≤ 1/2, then

D

(
µ(Y|Π = t,X = 1)

µ(Y|X = 1)

)
> 1/20.

Therefore, if we can show that the probability of getting a good transcript is sufficiently high, we
will get the bound we want from 4: let G be the set of good transcripts; then by (4),

IC
µ

(Π) ≥ 1

2
π11(G) · (1/20). (5)

Let B the set of bad transcripts, i.e., those transcripts t that have

at(0)

at(1)
> 1/2 and

bt(0)

bt(1)
> 1/2.

For each z ∈ {0, 1}, let B1 be the set of bad transcripts on which both players, if their input is 1,
output 1. On input 11, the correct behavior is for at least one player to output 0, so

π11(B1) ≤ δ.

On the other hand, for a bad transcript in B \B1, at least one of the players outputs 0 when their
input is 1. Let BA

0 , B
B
0 be the set of transcripts on which Alice and Bob, respectively, output 0

when their input is 1. On inputs 01 and 10 the correct behavior is for both players to output 1,
and therefore

π01(BB
0) ≤ δ and π10(BA

0) ≤ δ. (6)

Observe that if t is a bad transcript, then

π01(t) = at(0)bt(1) > at(1)bt(1) = π11(t)/2, (7)

and similarly,
π10(t) = at(1)bt(0) > at(1)bt(1) = π11(t)/2. (8)

Combining (6) with (7), (8) yields

π11(BB
0) < 2δ and π11(BA

0) < 2δ. (9)

All together, we get
π11(B) ≤ π11(B1) + π11(BA

0) + π11(BB
0) < 5δ. (10)

By (5),

IC
µ

(Π) ≥ 1

40
π11(G) >

1

40
(1− 5δ) .

23

References

[1] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

[2] R. Bar-Yehuda, K. Censor-Hillel, M. Ghaffari, and G. Schwartzman. Distributed approxi-
mation of maximum independent set and maximum matching. In Proceedings of the ACM
Symposium on Principles of Distributed Computing (PODC), pages 165–174, 2017.

[3] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics approach
to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732, 2004.

[4] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The locality of distributed symmetry
breaking. In Proceedings of 53th Symposium on Foundations of Computer Science (FOCS),
2012.

[5] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list
ranking. Information and Control, 70(1):32–53, 1986.

[6] A. Czygrinow and M. Hańćkowiak. Distributed algorithm for better approximation of the
maximum matching. In 9th Annual International Computing and Combinatorics Conference
(COCOON), pages 242–251, 2003.

[7] J. Edmonds. Maximum matching and a polyhedron with 0, 1 vertices. Canadian Journal of
mathematics, pages 449–467, 1965.

[8] J. Edmonds. Paths, trees, and flowers. J. of Res. the Nat. Bureau of Standards, 69 B:125–130,
1965.

[9] F. Eisenbrand, S. Funke, N. Garg, and J. Könemann. A combinatorial algorithm for com-
puting a maximum independent set in a t-perfect graph. In Proceedings of 14th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 517–522, 2003.

[10] G. Even, M. Medina, and D. Ron. Distributed maximum matching in bounded degree graphs.
In Proceedings of the 2015 International Conference on Distributed Computing and Networking
(ICDCN), pages 18:1–18:10, 2015.

[11] M. Fischer. Improved deterministic distributed matching via rounding. In Proceedings of 31st
Symposium on Distributed Computing (DISC), pages 17:1–17:15, 2017.

[12] M. Fischer, M. Ghaffari, and F. Kuhn. Deterministic distributed edge-coloring via hyper-
graph maximal matching. In Proceedings of 58th IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 180–191, 2017.

[13] M. Ghaffari, D. G. Harris, and F. Kuhn. On derandomizing local distributed algorithms, 2017.

[14] M. Hańćkowiak, M. Karoński, and A. Panconesi. On the distributed complexity of computing
maximal matchings. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 219–225, 1998.

[15] M. Hańćkowiak, M. Karoński, and A. Panconesi. A faster distributed algorithm for com-
puting maximal matchings deterministically. In Proceedings of the Eighteenth Annual ACM
Symposium on Principles of Distributed Computing (PODC), pages 219–228, 1999.

24

[16] M. Hańćkowiak, M. Karoński, and A. Panconesi. On the distributed complexity of computing
maximal matchings. SIAM J. Discrete Math., 15(1):41–57, 2001.

[17] A. Israeli and Y. Shiloach. An improved parallel algorithm for maximal matching. Inf. Process.
Lett., 22(2):57–60, 1986.

[18] R. M. Karp and J. E. Hopcroft. An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing, 1973.

[19] F. Kuhn and T. Moscibroda. Distributed approximation of capacitated dominating sets. In
Proceedings of 19th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 161–170, 2007.

[20] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In Proceedings
of 17th Symposium on Discrete Algorithms (SODA), pages 980–989, 2006.

[21] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Local computation: Lower and upper bounds.
J. of the ACM, 63(2), 2016.

[22] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate matching. In Pro-
ceedings of the 20th Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 129–136, 2008.

[23] Z. Lotker, B. Patt-Shamir, and A. Rosén. Distributed approximate matching. SIAM Journal
on Computing, 39(2):445–460, 2009.

[24] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal
on Computing, 15:1036–1053, 1986.

[25] A. McGregor. Finding graph matchings in data streams. In Approximation, Randomization
and Combinatorial Optimization. Algorithms and Techniques, pages 170–181, 2005.

[26] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[27] S. Plotkin, D. Shmoys, and E. Tardos. Fast approximation algorithms for fractional packing
and covering problems. Mathematics of Operations Research, 20:257–301, 1995.

[28] A. D. Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg, and
R. Wattenhofer. Distributed verification and hardness of distributed approximation. SIAM J.
Comput., 41(5):1235–1265, 2012.

[29] M. Wattenhofer and R. Wattenhofer. Distributed weighted matching. In Proceedings of 18th
International Distributed Computing Conference (DISC), pages 335–348, 2004.

[30] Y. Yoshida, M. Yamamoto, and H. Ito. An improved constant-time approximation algorithm
for maximum matchings. STOC ’09, pages 225–234, 2009.

25

	Introduction
	Exact Unweighted Maximum Matching in Bipartite Graphs
	Approximate Fractional Weighted Maximum Matching
	Deterministic Rounding of Fractional Matchings
	Lower Bound for (1-O(1/n))-Approximate Fractional Matching

	Related Work
	Model and Definitions
	Exact Maximum Matching in Bipartite Graphs
	Setting Up an Augmenting Path: Procedure SetupPath
	Finding the path
	Informing the nodes on the path
	Confirming the path

	Augmenting the Matching

	Fractional Matching Approximation
	Distributed Algorithm for 2-Colored Bipartite Graphs

	Deterministic Rounding of Fractional Matchings
	Lower Bound
	The 2-Player Problem
	The Lower Bound Graph
	The Simulation
	The Players' Output
	Correctness of the Reduction
	A Lower Bound on PXA

