
Optimally Serving Concurrent Requests on
Hierarchically Well-Separated Trees
Abdolhamid Ghodselahi1 and Fabian Kuhn2

1 Department of Computer Science, University of Freiburg, Freiburg, Germany
hghods@cs.uni-freiburg.de

2 Department of Computer Science, University of Freiburg, Freiburg, Germany
kuhn@cs.uni-freiburg.de

Abstract
We consider the traveling salesman problem (TSP) with k ≥ 1 salespeople (k-TSP) on a hierar-
chically well-separated tree (HST). We show that the k-TSP can be optimally solved on HSTs.
Based on this result, we show that the online service with delay (OSD) problem and the dis-
tributed queuing problem and even their generalized versions where there are k ≥ 1 servers are
optimally solved on HSTs if the requests arrive at the same time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems—Sequencing
and scheduling, G.2.2 Graph Theory—Network problems

Keywords and phrases k-TSP, OSD, distributed queuing, HSTs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.

1 Introduction

The OSD problem [1] and the distributed queuing problem [6, 7, 5] deal with serving a
set of requests that arrive in an online fashion at any time at the points of a metric space
(for distributed queuing problem we model the given network as a graph). In each of these
problems, there is a server initially located at some point of the metric space. The goal
is to provide an order in which the requests must be served by moving the server to the
requested points. An inherited characteristic of the two problems is that postponing serving
a request is sometimes required and therefore it is generally allowed. In the distributed
queuing problem, the processors of a network issue requests to mutually access a mobile
shared object, say a server. In this problem, an order is defined in such a way that the
processor that issues a request in the global order knows who its successor request is. A
newly arrived request is said to be enqueued whenever its predecessor in the global order
learns about it. The delay of a request in the distributed problem is the time that it takes
since the request arrives until is enqueued while in the OSD problem it is the time that takes
until the request is served.

The two problems are equivalent to the classic (centralized or distributed) k-server prob-
lem [8, 2] where k = 1 if there is a large enough time window between the releasing times
of any pair of requests, say if the requests “sequentially” arrive. In other words, the two
problems equivalent to the 1-server problem and thus becomes trivial if the order of serving
the requests is provided in advance. Considering the situation where all the requests arrive
on a metric at the same time can sometimes make our work easier to solve the given problem
for the general case of arriving the requests [6, 7]. Given a parameter α > 1, an α-HST [4]
is a rooted tree where the length of any edge is smaller by a factor of α from any edge at
one higher level. In this brief announcement, it is shown that the k-TSP can be optimally

EA
T

C
S

© Abdolhamid Ghodselahi and Fabian Kuhn;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Daniel Marx, and Don Sannella;
Article No. ; pp. :1–:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Optimally Serving Concurrent Requests on HSTs

solved on HSTs. The k-TSP can be seen as a natural generalization of TSP [3] where there
are k ≥ 1 salespeople. We also show that the OSD problem and the distributed queuing
problem and even their generalized versions for k > 1 servers are identical with the k-TSP
when the requests arrive at the same time. Consequently, for this special pattern of arriving
requests, the two problems can be optimally solved on HSTs. Further, w.r.t. [9] there is a
Θ(logN) competitive ratio for each of the two problems (for the versions of the problems
with k = 1 server) on a graph with N nodes, for which the distance metric obeys the triangle
inequality.

1.1 Further Related Work
The distributed queuing problem has been traditionally studied when there is k = 1 server.
The OSD problem has been studied in [1] for k ≥ 1 servers. On HSTs for k = 1 server, [1]
and [5] provide O(log3 n) and O(1) competitive ratios for the OSD and distributed queuing
problems, respectively. For k > 1 servers on HSTs, [1] presents a competitive ratio of
O(k · log4 n) for the OSD problem. In the case when all requests arrive at the same time,
[6] shows that the Arrow algorithm that solves the distributed queuing problem on tree
networks simulates the Nearest-Neighbor algorithm in a distributed setting and the
resulted order by Arrow is a Nearest-Neighbor TSP path w.r.t. the tree distances.

2 k-TSP on HSTs

In this section we show that the k-TSP can be optimally solved on HSTs. Given an HST
T , a set of requests R, and k ≥ 1 servers s1, s2, . . . , sk initially located at some leaves of T .
We assume that, w.l.o.g., at each leaf of T that hosts a server at the beginning there is a
dummy request and the k dummy requests are included in R. The servers must move on
T and serve the requests in R at the leaves of T . The cost of travel between each pair of
requests, say the length of the edge that connects the two adjacent requests in the final TSP
path, equals the length of the path travelled on T by some server between the two requests.
A feasible solution of the problem is k TSP paths that span all the requests. The goal is to
minimize the total length of the resulted k TSP paths.

Generalized Nearest-Neighbor (GNN) Algorithm.

The GNN algorithm is a generalization of Nearest-Neighbor algorithm [3]. The GNN
algorithm sequentially and greedily moves the servers to the leaves of T that host the re-
quests. For any server we define a serving phase. The server serves a subset of requests (at
least the dummy request located at the initial location of the server) and stops at some leaf
of T . The server never moves again after it stops.

1. i=1.
2. Find the shortest distance from the current location of si to an unserved request r (ties

are arbitrarily broken).
3. If r is closer to some other server then i = i+ 1 and go to Step 2.
4. Move si to the point of r and serve r.
5. If all the requests are served then terminate.
6. Go to Step 2.

I Theorem 1. Assume that we are given an α-HST T for α > 1, a set of requests R that
are at the leaves of T from the beginning, and k ≥ 1 servers initially located at some leaves

A.Ghodselahi and F. Kuhn XX:3

of T together with dummy requests. The GNN algorithm serves all the requests in R with
minimum traveling cost for the servers.

To show that the GNN algorithm correctly works, we need to show that any request in
R is served by some server of GNN.

I Lemma 2. All the requests in R are served by GNN algorithm.

Proof. If there is only one server then GNN algorithm is the same as Nearest-Neighbor
algorithm and we are done. Suppose there are more than one server. Assume that the
request r is not served by GNN algorithm and let sp denote the server that is (at least
one of) the closest one to r when the algorithm terminates. The request r was not served
during the serving phase of sp because there was a closer server sq w.r.t. the algorithm
description where q > p. This implies that the lowest subtree T ′ of T that includes both r
and sq during the serving phase of sp has smaller depth than the lowest subtree T ′′ of T that
includes both r and any leaf that was hosting sp in the serving phase of sp. The assumption
that the distance between sp and r is not longer than the distance between r and sq when
the algorithm terminates, however, implies that sq left the subtree T ′′ during its serving
phase. This contradicts the fact that any server of GNN does not leave any subtree of T
while there is an unserved request there. J

Consider a spanning forest F of a graph G = (V,E) with k ≥ 1 connected subtrees.
In this brief announcement, from now on, we mean “a spanning forest with k connected
subtrees” wherever we say a spanning forest. A spanning forest consisting of k+1 connected
subtrees of F is resulted by removing the edge e of F from F . Let Ve,1, . . . , Ve,k+1 be the
node sets of these k + 1 connected components. We say that (Ve,1, . . . , Ve,k+1) is the k-
cut induced by removing e from F . We provide a general minimum spanning forest (MSF)
approximation result. This result holds for a family of MSFs that satisfy some property
P. The property P can be nothing and therefore the approximation result holds for general
MSFs. Consider a spanning forest F of G that satisfies the property P. The next theorem
shows that the total length of F is within a factor λ of the length of an MSF that satisfies
the property P if the same approximation factor λ is guaranteed between the edge sets of
the MSF and F under some conditions.

I Theorem 3. Let λ ≥ 1 be some number and let G = (V,E,w) be a weighted connected
graph with non-negative edge weights w(e) ≥ 0 and let F and F∗ be two arbitrary spanning
forests of G each with k ≥ 1 connected subtrees that satisfies the property P. For every edge
e of F , consider the lightest edge e∗ of F∗ crossing the k-cut induced by removing e from F
such that the spanning forest that is resulted by removing e from F and by adding e∗ satisfies
the property P. If e∗ has weight w(e∗) ≥ w(e)/λ, then the total weight of all edges of F is
at most a λ-factor larger than the total weight of the edges of F∗.

Proof. We generalize the proof provided in the arXiv version of [5] to prove the theorem.
In the following, we slightly abuse notation and we identify a spanning forest F with the
set of edges contained in F . For an edge set F ⊆ E, we also use w(F) to denote the total
weight of the edges in F . We prove the stronger statement that

w(F \ F∗) ≤ λ · w(F∗ \ F). (1)

We show (1) by induction on |F \ F∗| = |F∗ \ F|. First note that if |F \ F∗| = 0, we have
F = F∗ and thus (1) is clearly true. Further, if |F \ F∗| = 1, there is exactly one edge
e ∈ F \ F∗ and exactly one edge e∗ ∈ F∗ \ F . Because F and F∗ are spanning forests, e∗

ICALP 2018

XX:4 Optimally Serving Concurrent Requests on HSTs

connects the two components of the k-cut (Ve,1, . . . , Ve,k+1) induced by removing e from F
and we therefore have w(e) ≤ λ · w(e∗), implying (1).

Let us therefore assume that |F \ F∗| = ` ≥ 2 and let e be a maximum weight edge of
F \ F∗. Let (Ve,1, . . . , Ve,k+1) be the k-cut induced by removing e from F . Further, let F ′
be a spanning forest of G that is obtained by removing e from F and by adding some edge
e∗ ∈ F∗ \ F that connects two components Ve,i and Ve,j where 1 ≤ i 6= j ≤ k + 1 such
that F ′ satisfies the property P. Note that by the assumptions of the theorem, we have
w(e) ≤ λ · w(e∗). To prove (1), it thus suffices to show that w(F ′ \ F∗) ≤ λ · w(F∗ \ F ′).
We have |F ′ \ F∗| = `− 1 and thus, if the spanning forest F ′ satisfies the conditions of the
theorem, w(F ′ \ F∗) ≤ λ · w(F∗ \ F ′) and (1) follows from the induction hypothesis. We
therefore need to show that F ′ satisfies the conditions of the theorem.

e e∗

e′

Ve,1

Ve,2

ê∗

ê∗

Figure 1 A spanning forest with k = 1 connected subtree. We can simply call it a spanning tree.
The magenta edges indicate the two possibilities for ê∗.

Consider an arbitrary edge e′ ∈ F ′ \F∗ and let (Ue′,1, . . . , Ue′,k+1) be the partition of V
induced by removing e′ from the forest F ′. Since e′ is an edge of one of the k + 1 subtrees
of F resulting after removing e, e′ connects two nodes in one of the component Ve,z where
1 ≤ z ≤ k + 1. We need to show that for every edge ê∗ ∈ F∗ \ F ′ crossing the k-cut
(Ue′,1, . . . , Ue′,k+1) in which the resulted spanning forest that is obtained by removing e′
from F ′ and by adding the edge ê∗ satisfies the property P, it holds that w(e′) ≤ λ · w(ê∗).
Such an edge ê∗ has to crosses the k-cut induced by removing e′ from F or crosses the
k-cut induced by removing e from F . In the first case, we have w(e′) ≤ λ · w(ê∗) by the
assumptions of the theorem. In the second case, we have w(e′) ≤ w(e) ≤ λ ·w(e∗) ≤ λ ·w(ê∗)
(recall that we chose e to be the heaviest edge from F \ F∗). This concludes the proof. J

A feasible solution for the k-TSP is a spanning forest with k connected subtrees that
satisfies a property P. A spanning forest of requests in R satisfies the property P if each
of the k subtrees of the spanning forest includes exactly one dummy request. The cost of an
optimal solution, thus, is lower bounded by the total length of a an MSF that satisfies the
property P. Therefore, the Theorem 1 holds if we show that the total length of the spanning
forest resulted by GNN equals the total length of an MSF that satisfies the property P.

I Lemma 4. Let F be the spanning forest resulted by GNN and let F∗ be an MSF of requests
in R with k ≥ 1 connected subtrees that satisfies the property P. For every edge e of F ,
consider the lightest edge e∗ of F∗ crossing the k-cut induced by removing e from F such
that the spanning forest that is resulted by removing e from F and by adding e∗ satisfies the
property P. The length of e equals the length of e∗.

Proof. Denoted by τ1, τ2, . . . , τk the k connected subtrees (TSP paths) of the spanning forest
F . Let Ri denote the request set of the subtree τi that are served by the server si for all
1 ≤ i ≤ k. Assume that (R1, . . . , Rj−1, Rj,1, Rj,2, Rj+1, . . . , Rk) is the k-cut that is resulted

A.Ghodselahi and F. Kuhn XX:5

by removing any arbitrary edge e = (rp, rq) of F from the subtree τj . W.l.o.g. assume that
the dummy request of subtree τj is in Rj,1 and further rp ∈ Rj,1 and rq ∈ Rj,2. The lightest
edge e∗ = (rx, ry) of F∗ must connect one request, say ry, in Rj,2 and one request, say rx, in
one of the k sets R1, . . . , Rj−1, Rj,1, Rj+1, . . . , Rk to guarantee that the spanning forest that
is resulted by removing e from F and by adding e∗ satisfies the property P. Assume that
the edge e∗ is shorter than e. We will show some contradiction because of this assumption.
Let the subtree T ′′ of T denote the lowest subtree of T in which it includes both rx and
ry. Therefore, the length of the longest shortest path between any two leaves of T ′′, say the
diameter of T ′′ is smaller than the length of e.

Rj,1 Rj,2

τ`x

rp rqesj

e∗

e∗

ry

rx

τj

. . .

k − 2 trees

rx

Figure 2 The spanning forest F with k spanning trees. The magenta edges indicate the two
possibilities for the edge e∗.

Case rx ∈ Rj,1: The GNN algorithm serves rx by sj before serving the request rp

since rp is the last served request in Rj,1. Therefore, the order of requests served by sj is
. . . , rx, . . . , rp, rq, . . . , ry, This order of serving the requests together with the assumption
in which the diameter of T ′′ is smaller than the length of e imply that sj leaves the subtree T ′′
before serving ry. However, this contradicts the fact that a server does not leave any subtree
of T while there is still an unserved request there, w.r.t. the GNN algorithm description.

Case rx ∈ R`x for `x ∈ [1, k] and `x 6= j: If `x < j, i.e., s`x moves earlier than sj , then
the fact that ry is not served by s`x

implies that the server sj during the serving phase of s`x

is in T ′′ closer to ry than rx to ry (note that s`x serves rx). Hence, sj serves the requests in
the order of . . . , ry, . . . , rp, rq, . . . using the fact that rq is immediately served after serving
the request rp by sj and the assumption that states the diameter of T ′′ is smaller than the
length of e. However, the initial location of sj is in Rj,1 and rp is actually served before ry

and it is a contradiction.
By contrast if sj moves earlier than s`x

, then the fact that rx is not served by sj implies
that the server s`x

is in T ′′ closer to rx than ry to rx during the serving phase of sj (note
that ry is served by sj). The requests rp and rq cannot both be in T ′′ because the diameter
of T ′′ is shorter than e. Therefore, the server sj must enter the subtree T ′′ with respect to
the fact that rp and rq are served before ry by sj . However, this contradicts the fact that
the GNN algorithm does not move a server into a subtree where there is another server. J

Let P = P. Theorem 1 then directly follows from Theorem 3 and Lemma 4.

3 Applications

In this section it is shown that the OSD problem and the distributed queuing problem are
identical to the k-TSP (TSP with k ≥ 1 salespeople) if the requests arrive at the same time.

ICALP 2018

XX:6 Optimally Serving Concurrent Requests on HSTs

3.1 OSD Problem

In the OSD problem, the time that takes until a request is served count for nothing. Hence,
a set of requests can all be served at some point of time when an online algorithm that
solves the OSD problem moves a server. Note, however, the online algorithm must pay the
total distance travelled by the servers to serve a set of requests. In the OSD problem the
goal is to minimize the sum of distance traveled by the servers and the total delay of serving
requests where delay of a request is the difference between the times when the request is
issued and served [1].

All the requests in the OSD problem are instantaneously served when they arrive at the
same time and hence the OSD problem with k ≥ 1 servers is transformed into the k-TSP
where the goal is to minimize the total movement cost of the servers.

3.2 Distributed Queuing Problem

Consider a given network. Each processor of the given network in a distributed online
algorithm has to make its decision only based on the local information it has. Therefore, it
must communicate with other processors to obtain necessary parts of the global picture of
the configuration to make its decision. This limitation to not have a global picture of the
system makes the work of an online algorithm in a distributed system harder than centralized
system against an offline algorithm who suffers neither from having local information nor
incomplete knowledge of the request sequence.

In the distributed queuing problem, the input network is modeled by a weighted graph.
The weight of each edge is the distance between its two endpoints. Nodes are supposed
to be the processors of the network and the edges are supposed to be the communication
links between the processors. For the distributed queuing problem, we assume the standard
message passing model where in a synchronous system the delay for sending a message over
an edge is exactly the weight of the edge. In the distributed queuing problem as described
in Section 1, the delay of a request is the difference between the times when the request
is issued and enqueued. It was also mentioned that a newly arrived request is said to be
enqueued whenever the node of its predecessor in the global order “learns” about it. This
is done in such a way that the node of the new request sends a “find message” to the node
of its predecessor. As soon as the predecessor request is issued and as soon as the the find
message by the successor node reaches to the node of predecessor request, we say that the
node of the predecessor request learns about the successor request. The goal is to minimize
the total delay cost of all requests.

When the requests arrive at the same time, because all the requests are available in the
system the delay of a request equals the difference between the times when the request is
issued and when the find message by the new request reaches to the node of its predecessor
request. In a synchronous execution, this delay equals the length of the path between the
nodes of two consecutive requests in the global order. Therefore, the problem now is equiva-
lent to the distributed TSP where the goal is to minimize the total distance travelled by the
shared object/server. To show that the distributed queuing problem is also optimally solved
on HSTs when the requests arrive at the same time, w.r.t. the Theorem 1 it remains to pro-
vide a distributed version of Nearest-Neighbor algorithm that can solve the distributed
TSP.

A.Ghodselahi and F. Kuhn XX:7

Distributed Nearest-Neighbor Algorithm.

The Arrow algorithm is a simple and elegant link reversal distributed algorithm that solves
the distributed queuing problem. The Arrow algorithm can only operate on directed tree
networks. In Arrow algorithm, initially all nodes point to the location of the server, say
v, that also hosts the dummy request and thus v is now the tail of the queue. A node u
issues a request to access to the server. Thus, u sends a message along the arrows until it
finds the current tail of the queue that is now v. Note that, at each time, there is only one
outgoing edge for each node and hence there is only one unique path from each node towards
the current tail of the queue. When the find message by u reaches to v, v sends the shared
object to u. While the message follows the path between u and v, the directions of the arrows
are reversed such that now all the nodes point to u and thus u is the current tail of the
queue. It was shown that Arrow correctly works even if the requests are concurrently and
dynamically issued at any time. For more details about the distributed queuing problem, the
distributed model in which the problem is studied, and the Arrow algorithm description
refer to [6, 7, 5].

In a synchronous execution of Arrow on a given tree, the delay of a request is always
equal to the distance (dT) between the respective nodes in the tree because Arrow always
finds the predecessor on the direct path. The Arrow algorithm greedily orders the requests
as follows: suppose i− 1 requests are ordered. The request r = (v, t) that is issued at time
t at node v is ordered by Arrow as the i-th request if the find message by v sent at time
t reaches to the current tail of the queue earlier than all find messages by the remaining
requests that are not enqueued yet. This greedy property of Arrow is formally shown in
[5].

I Lemma 5 (Lemma 7 in [5] rephrased). Consider a synchronous execution of Arrow on tree
T and consider two arbitrary requests ri = (vi, ti) and rj = (vj , tj) for which rj is ordered
after ri by Arrow. Then it holds that ti + dT (v′, vi) ≤ tj + dT (v′, vj) where r′ = (v′, t′) is
the predecessor request of ri in the resulted global order by Arrow.

Consider two arbitrary requests ri = (vi, ti) and rj = (vj , tj) for which rj is ordered after
ri by Arrow and r′ = (v′, t′) is the predecessor of ri. When the requests arrive at the same
time we have ti = tj and regarding to the Lemma 5, vi must be the closest requested node
(ties are arbitrarily broken) to v′ among all remaining requested nodes. This implies that
the Arrow algorithm exactly implements the distributed version of Nearest-Neighbor
algorithm w.r.t. the tree distances if the requests arrive at the same time. Hence, a requested
node that is the closest to the current tail of the queue is ordered and be the new tail of the
queue.

Distributed GNN Algorithm on Overlay Trees.

The distributed queuing problem is traditionally studied when there is one shared objec-
t/server. Also, the Arrow algorithm can solve the problem when there is only one server.
In the following, we provide a new distributed queuing algorithm that is Arrow with some
modification that is run on overlay trees to support not only k = 1 server, but also k > 1
servers. An overlay tree is constructed on top of the original network whose leaves are the
computing nodes of the system. The modified Arrow simulates the GNN algorithm in a
distributed setting when the requests are issued at the same time. The solution of modified
Arrow algorithm consists of k ≥ 1 orders each corresponds to a server. All the requests in
each order therefore are served by the corresponding server.

ICALP 2018

XX:8 Optimally Serving Concurrent Requests on HSTs

Consider a set of k servers each with a dummy request located at the leaves of the given
rooted tree T . Further, suppose a set of requests that are available at the leaves of T from
the beginning. W.l.o.g. assume that the servers are at different leaves of T . In a quiescent
state, for any server, all the nodes on the path from the root of T to the leaf that hosts the
server, point to the server. Further, each leaf that hosts a server points to itself. Hence, we
have k directed path with downward arrows from the root of T to the points of the current
tails of the orders. Any other node points to its parent with upward arrows.

v

z w

u1 u2 u3 u4 u5

s s′

Figure 3 Modified Arrow algorithm: initial system state. The servers s and s′ serve requests
in orders π and π′, respectively. The dummy requests at u1 and u3 are the tails of π and π′,
respectively.

New request r at leaf u: If the leaf u points to itself, then r is enqueued behind the
last request that has been issued by u. Otherwise, the leaf u atomically sends a “find
message” to its parent through an upward arrow. The arrow from u to its parent is
removed and u then points to itself.

v

z w

u1 u2 u3 u4 u5

m2 m4 m5

s s′

Figure 4 Modified Arrow algorithm step 1: nodes u2, u3, u4, and u5 initiate requests r2, r3,
r4, and r5 and send “find messages” m2, m3, m4, and m5, respectively, along the arrows.

Upon w receiving the “find message by u” from node v: If w has an upward
arrow, then the “find message by u” is atomically forwarded to its parent, the upward
arrow from w to its parent is removed and then w points to v using a downward arrow.
Otherwise, if w points to itself then the request r issued by u is enqueued behind the last
request that has been issued by w. Then, w removes the arrow that points to itself and
points to v using an upward arrow. However, if w neither has an upward arrow nor points
to itself, then it must have at least one downward arrow. Ties are arbitrarily broken and
the “find message by u” is atomically forwarded to one child through a downward arrow.
The node w then removes the downward arrow and points to v.

A.Ghodselahi and F. Kuhn XX:9

v

z w

u1 u2 u3 u4 u5

m2

m4

m5
s s′

(a) Modified Arrow algorithm step 2

v

z w

u1 u2 u3 u4 u5

m4

s s′s′

(b) Modified Arrow algorithm step 3

Figure 5 The “find messages” follow the arrows, reversing their directions along their ways. (a)
The request r3 is the current tail of π′. Both m4 and m5 reach to w at the same time and w

arbitrarily forwards m4 towards v and therefore m5 has been deflected towards u4. The request r2

is the current tail of π. (b) The request r2 is ordered behind the dummy request of π and s moves
to u2. The request r5 is ordered behind r4 while the “find message” by u4 is (arbitrarily) forwarded
to z by v. The request r5 is the current tail of π.

v

z w

u1 u2 u3 u4 u5

m4

s s′

(a) Modified Arrow algorithm step 4

v

z w

u1 u2 u3 u4 u5

ss′

(b) Modified Arrow algorithm step 5

Figure 6 As it is shown in Figures 3-6, there are always two connected path with magenta arrows
from the root to the current tails of the orders. (b) The request r4 is ordered behind r2 and s moves
to u4. The server s immediately moves from u4 to u5 since r5 has been already ordered behind r4.

The Arrow algorithm with the above modification, simulates the GNN algorithm in the
distributed setting as follows. While the GNN algorithm sequentially orders the requests,
the Arrow with modification orders the requests in parallel. The GNN algorithm 1) does
not move a server outside of a subtree of T if there is still an unserved request there and
2) does not enter a server into a subtree of T to serve a subset of unserved requests if there
is another server in the subtree. The first property of GNN is guaranteed by the Lemma
5 for the Arrow with modification like the original Arrow. In other words, in any order
among the k orders resulted by the Arrow with modification, a request r will be the new
tail of the order if it is the closest request to the current tail of the order w.r.t. the tree
distances among all other requests that appear after r in the order. The second property
of GNN is guaranteed using the downward arrows from the root of T to the k current tails
of the orders. Consider the current tail of the order πi that is in the subtree T ′ of T and
the current tail of the order πj that is in another subtree T in which the two subtrees are
the highest subtrees such that each of the two subtrees does not include both tails of πi and
πj . Any request r = (v, t) in T ′ is not enqueued in the order πj since the find message by v
always visits a downward arrow inside T ′ and therefore it cannot visit any downward arrow
that points to the current tail of πj .
I Remark. Although the modified Arrow algorithm as described optimally solves the dis-
tributed queuing problem with k ≥ 1 servers on T when the requests are aissued at the
same time, it cannot be competitive where there are k > 1 servers and when the requests
are issued at any time. The reason is the same as the one for Nearest-Neighbor algorithm

ICALP 2018

XX:10 Optimally Serving Concurrent Requests on HSTs

that is not competitive for the classic k-server problem. Consider two different subtrees of
T that are far from each other and each of them hosts a server. If two leaves of one of
the subtrees issue a large enough number of requests one after each other, the server in the
subtree must travel the distance between the two leaves many times while the other server
is idle in the second subtree.

4 Conclusion

In [1], the authors left this question open in which whether there is an online algorithm
that provides a constant competitive ratio for the OSD problem. The resemblances between
the studied two problems together with the constant competitive ratio for the distributed
queuing problem provided in [5] on HSTs, build our hopes up to get constant competitive
ratio for the OSD problem on HSTs.

References
1 Y. Azar, A. Ganesh, R. Ge, and D. Panigrahi. Online service with delay. In Proceedings of

the 49th ACM Symposium on Theory of Computing (STOC), pages 551–563, 2017.
2 Y. Bartal and A. Rosen. The distributed k-server problem-a competitive distributed trans-

lator for k-server algorithms. In Proceedings of the 33rd Symposium on Foundations of
Computer Science (FOCS), pages 344–353, 1992.

3 M. Bellmore and G. Nemhauser. The traveling salesman problem: a survey. Operations
Research, 16(3):538–558, 1968.

4 J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary met-
rics by tree metrics. In Proceedings of the 35th ACM Symposium on Theory of Computing
(STOC), pages 448–455, 2003.

5 A. Ghodselahi and F. Kuhn. Dynamic analysis of the arrow distributed directory protocol
in general networks. In Proceedings of the 31st International Symposium on Distributed
Computing (DISC), pages 22:1–22:16, 2017.

6 M. Herlihy, S. Tirthapura, and R. Wattenhofer. Competitive concurrent distributed queu-
ing. In Proceedings of the 20th ACM Symposium on Principles of Distributed Computing
(PODC), pages 127–133, 2001.

7 F. Kuhn and R. Wattenhofer. Dynamic analysis of the arrow distributed protocol. In
Proceedings of the 16th ACM Symposium on Parallelism in Algorithms and Architecture
(SPAA), pages 294–301, 2004.

8 M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for server problems.
Journal of Algorithms, 11(2):208–230, 1990.

9 D. Rosenkrantz, R. Stearns, and P. Lewis. An analysis of several heuristics for the traveling
salesman problem. SIAM Journal on Computing, 6(3):563–581, 1977.

	Introduction
	Further Related Work

	k-TSP on HSTs
	Applications
	OSD Problem
	Distributed Queuing Problem

	Conclusion

