
Distributed Approximation of k-Service Assignment
Magnús M. Halldórsson∗1, Sven Köhler†2, and Dror Rawitz‡3

1Reykjavik University, Iceland, mmh@ru.is
2University of Freiburg, koehlers@informatik.uni-freiburg.de

2Bar-Ilan University, Israel, dror.rawitz@biu.ac.il

December 2015

Abstract
We consider the k-Service Assignment problem (k-SA), defined as follows. The input consists

of a network that contains servers and clients, and an integer k. Each server has a finite capacity,
and each client is associated with a demand and a profit. A feasible solution is an assignment of
clients to neighboring servers such that (i) the total demand assigned to a server is at most its
capacity, and (ii) a client is assigned either to k servers or to none. The profit of an assignment is
the total profit of clients that are assigned to k servers, and the goal is to find a maximum profit
assignment. In the r-restricted version of k-SA, no client requires more than an r-fraction of the
capacity of any adjacent server. The k-SA problem is motivated by backup placement in networks
and by resource allocation in 4G cellular networks. It can also be viewed as machine scheduling on
related machines with assignment restrictions.

We present a centralized polynomial time greedy k+1−r
1−r

-approximation algorithm for r-restricted
k-SA. We then show that a variant of this algorithm achieves an approximation ratio of k+1 using a
resource augmentation factor of 1+r. We use the latter to present a (k+1)2-approximation algorithm
for k-SA. In the distributed setting, we present: (i) a (1 + ε) k+1−r

1−r
-approximation algorithm for

r-restricted k-SA, (ii) a (1 + ε)(k + 1)-approximation algorithm that uses a resource augmentation
factor of 1 + r for r-restricted k-SA, both for any constant ε > 0, and (iii) an O(k2)-approximation
algorithm for k-SA (in expectation). The three distributed algorithms compute a solution with high
probability and terminate in O(k2 · log3 n) rounds.

1 Introduction
We consider the k-Service Assignment problem (abbreviated k-SA). A k-SA instance consists of a
set of servers and a set of clients. Each server has a finite capacity, and each client has a demand and
a profit. (The demand of a client does not depend on the identity of the server.) A feasible solution is
a k-service assignment of clients to servers such that:
• A client is only assigned to neighboring servers.
• The total demand of clients that are assigned to a server does not exceed its capacity.
• Each client is assigned either to k servers or to none.

A client that is assigned to k servers is said to be satisfied, and the profit of a service assignment is the
total profit of satisfied clients. The goal in k-SA is to find a service assignment with maximum profit.

Given a constant r ∈ (0, 1], an instance of k-SA is said to be r-restricted if no client requires more
than an r-fraction of the capacity of any neighboring server. k-SA on r-restricted instances is referred
to as r-restricted k-SA.
∗Supported in part by Icelandic Research Fund (grants No. 120032011 and 152679-051).
†Supported in part by Sustainability Center Freiburg
‡Supported in part by a grant from the Israeli Ministry of Science, Technology, and Space and by the Israel Science

Foundation (grant No. 497/14).

1

k-SA is NP-hard, since the special case with exactly k servers is equivalent to the Knapsack
problem. Since Knapsack remains NP-hard even if the size of each item is at most an r-fraction of the
knapsack size, this hardness result applies to r-restricted k-SA, for any r ∈ (0, 1]. (This was explicitly
shown for 1-SA in [1].) This also means that the approximation ratio of the natural greedy algorithm
is Ω(1

1−r), even for r-restricted 1-SA.
The k-SA problem naturally arises in network applications where clients need service from (multiple)

servers. Amzallag et al. [1] used 1-SA to model the problem of assigning clients to base stations in 4G
cellular networks where services offered by providers (such as video streaming and web browsing) require
high bit-rates, and client diversity is an issue. By using 1-SA they took into account both base stations
diversity (using non-uniform capacities), as well as clients diversity (using different demands, profits,
and potential set of base stations). Amzallag et al. [1] also considered the variant of 1-SA where a client
c may be serviced by multiple servers as long as the total service it receives is d(c). Such an assignment
is called a cover by many, while a solution that assigns a single server to a client is called a cover by one.
They presented a 2−r

1−r -approximation algorithm that computes covers by one and a 1
1−r -approximation

algorithm that computes covers by many. In fact the former ratio is in comparison to an optimal cover
by many. Both algorithms are based on the local ratio technique [5, 3, 4].

Patt-Shamir et al. [18] presented a distributed implementation of the first algorithm from [1] while
paying a (1 + ε) factor in the approximation ratio. That is, they presented a distributed (1 + ε) 2−r

1−r -
approximation algorithm, for any ε > 0, for r-restricted 1-SA, for any r ∈ (0, 1). The algorithm
requires a polylogarithmic number of rounds in the Congest model. The above result is based on two
assumptions: (i) the cost-effectiveness of clients is polynomially bounded, and (ii) each server knows
the demands and profits of adjacent clients. (The definition of cost-effectiveness and a more detailed
description of these assumptions are given in the next section.)

Recently, Halldórsson at al. [13] considered the Backup Location problem in which each client has
a file whose backup should be stored in k neighbors to increase fault tolerance. They mainly focused
on the dual problem, where an instance is similar to a k-SA instance and the goal is to satisfy all
clients while minimizing the maximum load. They also observed that k-SA is APX-hard, for k ≥ 3, and
showed a lower bound of Ω(k

log k) for the approximation ratio based on a reduction from k-Dimensional
Matching [14].

Our Results. We generalize the 2−r
1−r -approximation algorithm from [1] by presenting a k+1−r

1−r -
approximation algorithm for r-restricted k-SA, for any r ∈ (0, 1). We provide a simplified analysis that
does not rely on the local ratio technique. We show that a variant of the above algorithm achieves an
approximation ratio of k+1 for r-restricted k-SA, for any r ∈ (0, 1], using a resource augmentation factor
of 1 + r. Then, by showing that the clients that receive service in the resource augmented solution can
be (k+ 1)-colored, such that each color induces a feasible solution, we obtain a (k+ 1)2-approximation
algorithm for k-SA. We note that the latter outperforms the k+1−r

1−r -approximation algorithm, when
r > k+1

k+2 .
Based on the approach taken in [18], we design a distributed version of the former algorithm that,

for any constant ε > 0, computes (1 + ε)k+1−r
1−r -approximate solutions for r-restricted k-SA with high

probability and whose running time is O(k2 ·log3 n) rounds in the Congest model. While the algorithm
for 1-SA from [18] is based on computing a maximal matching, our algorithm is based on computing
a maximal packing of stars, where each star consists of a client and k adjacent servers. As in the
centralized setting we provide an algorithm that achieves a factor of (1 + ε)(k + 1) using a resource
augmentation factor 1+r. We use distributed random selection instead of coloring to design a distributed
algorithm for k-SA that computes solutions whose expected profit is a Ω(k−2)-fraction of the optimum,
using O(k2 · log3 n) rounds. When k = O(1), this amounts to an O(1)-approximation algorithm that
terminates in O(log3 n) rounds.

The results of this paper can be extended to a natural variant of k-SA in which each client c ∈ C
requires service from k(c) ∈ N servers. Then kmax , maxc∈C k(c) replaces k in the approximation ratios
and time complexities. We will address this variant in the full version of the paper.

2

Related Work. 1-SA is equivalent to Multiple Knapsack with Assignment Restrictions
(MKAR), where the input consists of a set of bins and a set of items. Each bin has a capacity, and
each item j has a size, a profit, and a subset of bins in which it can be placed. A feasible solution is an
assignment of items to bins such that each item is assigned to one of the bins in its subset and the total
size of items assigned to each bin is at most its capacity. The goal is to find a solution of maximum
profit. A special case of MKAR, where the size and profit of an item are the same, was considered by
Dawande et al. [8]. They presented an LP-rounding 2-approximation algorithm, a (2+ε)-approximation
algorithm that uses an FPTAS for solving a single knapsack problem, and a greedy 3-approximation
algorithm.

Fleischer et al. [11] studied the Separable Assignment Problem (SAP). In this problem the
input consists of a set of bins and a set of items, and a profit fij for assigning item j to bin i. There
is also a separate packing constraint for each bin, i.e., a collection Ii of subsets of items that fit in
bin i. The goal is to maximize the total profit. Given an α-approximation algorithm for the single
machine version of SAP, they presented an LP-rounding based αe

e−1 -approximation algorithm and a
local search (α+1

α + ε)-approximation algorithm, for any ε > 0. If the single machine version admits a
PTAS (FPTAS), then the ratios are e

e−1 + ε (e
e−1) and 2 + ε.

In the Generalized Assignment Problem (GAP) the input consists of a set of bins and a set of
items. Each bin has a capacity, and each item j has a size and a profit for each bin i. A feasible solution
is an assignment of items to bins such that the total size of items that are assigned to a bin is at most
its capacity. GAP is a special case of SAP where the simple knapsack version admits an FPTAS, and
thus it has a e

e−1 -approximation algorithm. MKAR (and hence 1-SA) is a special case of GAP. Chekuri
and Khanna [7] gave a PTAS for Multiple Knapsack (without assignment restrictions) and showed
that GAP is APX-hard. In addition they observed that an LP-rounding 2-approximation algorithm for
the minimization version of GAP by Shmoys and Tardos [22] implies a 2-approximation algorithm for
GAP. This result applies to 1-SA.

Amzallag et al. [1] showed that the version of 1-SA that allows cover by many cannot be approxi-
mated to within a factor which is better than |J |1−ε, for any ε > 0, unless NP=ZPP.

k-SA is a special case of the Packing Integer Programs problem (PIP). In this problem we are
given a set of items and a collection of knapsack constraints over these items. The goal is to maximize
the profit of packed items. In k-SA each item appears in k constraints with the same coefficient.
The single constraint (or server) case is the Knapsack problem which has an FPTAS [21, 15], and
the constant number of constraints case is the Multi-dimensional Knapsack problem that has a
PTAS [12], while obtaining an FPTAS is NP-hard [17]. Raghavan and Thompson [20] used randomized
LP-rounding to obtain an approximation ratio of O(mr) for PIP, where m is the number of constraints,
k is the maximum number of constraints per item, and r is the maximum item coefficient per constraint
RHS. Srinivasan [23] improved this ratio to O(mr/(r+1)). In k-SA this translates to an O(|S|r/(r+1))
ratio, where S is the set of servers. Chekuri and Khanna [6] proved that the above ratio is almost tight
by showing that, for every fixed integer α and fixed ε > 0, the special case of PIP where all constraints
are composed of binary coefficients and RHS α cannot be approximated within a factor of m1/(α+1)−ε,
unless NP=ZPP. They also showed that PIP with uniform RHS α cannot be approximated within a
factor of m1/(α+1)−ε, unless NP=ZPP, even with a resource augmentation factor α. Note that this does
not contradict our results, since we assume that each item appears in at most k constraints.

Paper Organization. We formally define the problem and the execution model in Section 2. This
section also contains definitions and notation that is used in the paper. The centralized algorithms are
given and Section 3 and the distributed algorithms are presented in Section 4.

2 Preliminaries
This section contains a formal problem statement, several definitions and notation that we use through-
out the paper, and the execution model.

3

Problem. We consider the k-Service Assignment (k-SA) problem. A k-SA instance consists of
a bipartite graph G = (C, S,E), where C is a set of clients and S is a set of servers. Each server s ∈ S
has a positive capacity cap(s), and each client c ∈ C has a demand d(c) and a profit p(c). We define
n , |C|+ |S|. A feasible solution is a k-service assignment (or simply a service assignment) of clients
to servers, i.e., it is a function x : C × S → {0, 1} such that:
• A client is only assigned to neighboring servers, namely x(c, s) = 1 implies (c, s) ∈ E.
• The total demand of clients assigned to a server is not larger than its capacity, i.e.,

∑
c∈C x(c, s) ·

d(c) ≤ cap(s), for every server s ∈ S.
• Each client is assigned either to k servers or to none. That is,

∑
s∈S x(c, s) ∈ {0, k}, for every

client c ∈ C.
Given a k-service assignment x, a client is satisfied if

∑
s∈S x(c, s) = k. The set of satisfied clients

is denoted by Cx, that is Cx ,
{
c ∈ C :

∑
s∈S x(c, s) = k

}
. The profit of a service assignment x is

the total profit of satisfied clients, or p(Cx) ,
∑
c∈Cx

p(c), and the goal in k-SA is to find a service
assignment with maximum profit.

Given a constant r ∈ (0, 1], a k-SA instance is said to be r-restricted if no client requires more than
an r-fraction of the capacity of any neighboring server, namely if d(c) ≤ r · cap(s), for every (c, s) ∈ E.
k-SA on r-restricted instances is referred to as r-restricted k-SA.

Definitions, Notation, and Assumptions. We use standard graph theoretic notation. The
neighborhood of a vertex v is denoted by N(v), and the degree of v is denoted by deg(v).

If a function is applied to a finite set, then this yields the sum of function values for all elements of
the set, e.g., d(C) ,

∑
c∈C d(c). Also, given a function f with a finite domain, let fmin and fmax denote

the minimum and maximum value of f in its domain. For example, pmax , maxc∈C p(c).
Given a k-SA instance and a k-service assignment x, the set of clients assigned to a server s is denoted

by Cx(s) = {c ∈ C : x(c, s) = 1}, and note that Cx = ∪s∈SCx(s). We call d(Cx(s)) =
∑
c∈C x(c, s)d(c)

the load of server s. In this paper we sometimes consider non-feasible k-service assignments that violate
the server capacity constraints, in which case it is possible that d(Cx(s)) > cap(s), for a server s ∈ S.
Such a server is called overloaded. Given α ∈ [0, 1], a server s is called α-saturated if d(Cx(s)) ≥ α·cap(s).
A service assignment x is called α-maximal, if no unsatisfied client is adjacent to k non-α-saturated
servers.

Given a k-SA instance, the cost effectiveness of a client c ∈ C is denoted by ρ(c) , p(c)
d(c) . Cost-

effectiveness is assumed to be polynomially bounded, i.e., ρ(c) ≥ ρmin ∈ n−O(1) as well as ρ(c) ≤ ρmax ∈
nO(1). The bounds ρmin and ρmax are assumed to be known to each node.

Following [18] we assume that each server s is aware of the demands and profits of adjacent clients,
namely each server knows d(c) and p(c), for every c ∈ N(s). Observe that even if the numbers are
large, it may be the case that their encoding is somewhat small (i.e., of size O(logn)). An actual
implementation may use a floating-point encoding, so it may be possible to efficiently send the demands
and profits of clients to the adjacent servers. We also consider an alternative assumption that all nodes
know the maximum profit pmax. Notice that while the latter assumption requires global knowledge, the
former requires only local knowledge.

Execution Model. We use the classic Congest model [19], which is a network model with small
messages. Briefly, in this model nodes are processors with unique IDs, connected by links that can
carry O(logn)-bit messages in a time unit, or round. Processors are not restricted computationally (all
computations required by our algorithms are polynomial, though). As usual, for our upper bounds, we
implicitly assume that the α-synchronizer [2] is employed in the system, so that the algorithms operate
in a synchronous manner in the following sense. Execution proceeds in global rounds, where in each
round each processor: (i) receives messages sent by its neighbors in the previous round, (ii) performs a
local computation, and (iii) sends (possibly distinct) messages to its neighbors.

4

3 Centralized Greedy Algorithm
In this section we present an algorithm that computes α-maximal k-service assignments. This algorithm
is used to obtain three results: (i) a k+1−r

1−r -approximation algorithm for r-restricted k-SA, for any
r ∈ (0, 1), (ii) a (k+1)-approximation algorithm for r-restricted k-SA, for any r ∈ (0, 1], using a resource
augmentation factor of 1 + r, and (iii) a (k+ 1)2-approximation algorithm for k-SA. The first algorithm
extends the 2−r

1−r -approximation algorithm for 1-SA from [18]. However, we provide a simplified analysis
that does not use the local ratio technique. Also, note that while the k+1−r

1−r -approximation algorithm
requires knowledge of r, the other two algorithms do not.

Algorithm α-Greedy (Algorithm 1) sorts the clients in a non-increasing order by cost effectiveness
and then tries to service the clients in order. It assigns each client to some k adjacent servers that
are not yet α-saturated, if possible; otherwise, the client is dismissed. We note that if α > 1 − r, the
computed solution x may be non-feasible.

Algorithm 1 : α-Greedy(C, S,E, d, p)
1: Let 〈c1, c2, c3, . . .〉 be a sequence of all clients sorted in non-increasing order of ρ
2: x← 0
3: for i = 1, 2, 3, . . . do
4: if there exist k non-α-saturated servers in N(ci) then
5: Let s1, . . . , sk ∈ N(ci) be k non-α-saturated servers
6: x(ci, sj)← 1, for every j
7: end if
8: end for

Observation 1. Algorithm α-Greedy computes α-maximal service assignments.

Proof. Assume that the computed solution x is not α-maximal. Then, there exists a client ci ∈ C that
is adjacent to k non-α-saturated servers. It follows that when ci is considered by α-Greedy these k
servers are non-α-saturated, which means that ci would have received service. A contradiction.

We will in later sections be using rounding and therefore state our analysis of α-Greedy more
generally than will be used in this section.

Let π, δ ≥ 1. Given a k-SA instance, let p′ be a profit vector such that p′(c) ∈ [p(c), π · p(c)] and let
d′ be a demand vector such that d′(c) ∈ [d(c), δ · d(c)]. Define ρ′(c) , p′(c)

d′(c) .

Lemma 2. Given a k-SA instance, let x be the solution computed by α-Greedy using p′ and d′, and
let x∗ be an optimal solution with respect p and d. Then, we have that p(Cx) ≥ α

δπk+αp(Cx∗).

Proof. Let F be the set of servers that are α-saturated with respect to the α-Greedy solution x.
Consider a client ci ∈ Cx∗ \ Cx satisfied by the optimal solution x∗ but not by α-Greedy. Since
α-Greedy does not satisfy ci and due to Observation 1, ci must be connected to fewer than k non-α-
saturated servers (in S \ F). Therefore, there exists an α-saturated server s ∈ F that is assigned to ci
by the optimal solution, that is such that x∗(ci, s) = 1. Let f be a mapping which maps each client
ci ∈ Cx∗ \ Cx to a server s ∈ F such that x∗(ci, s) = 1. This is depicted in Figure 1.

Observe that the load of an α-saturated server s is by definition at least

d′(Cx(s)) =
∑
c

x(c, s)d′(c) ≥ α · cap(s) .

Let f−1(s) = {c ∈ Cx∗ \ Cx : f(c) = s} be the set of clients that are mapped to a α-saturated server
s ∈ F . Since each such client is assigned to s in the optimal solution x∗,

d(f−1(s)) ≤
∑
c

x∗(c, s)d(c) ≤ cap(s) ≤ d′(Cx(s))
α

. (1)

5

Cx∗ \ Cx

C \ (Cx∗ \ Cx)

F

S \ F

Figure 1: The arrows represent the mapping f .

Consider a client ci ∈ f−1(s) and a client cj ∈ Cx(s). Since x does not satisfy ci, the server s must have
been α-saturated when α-Greedy tried to assign ci. Thus, cj must have been considered by α-Greedy
prior to ci, and the cost-effectiveness of cj is then at least as high as that of ci, i.e., ρ′(cj) ≥ ρ′(ci). It
follows that ρ′(c) ≤ ρ′(c′), for every c ∈ f−1(s) and c′ ∈ Cx(s). This implies that ρ′(c) ≤ p′(Cx(s))

d′(Cx(s)) , for
every c ∈ f−1(s).

For the total profit of all clients that f maps to s we then have that

p(f−1(s)) ≤ p′(f−1(s)) =
∑

c∈f−1(s)

d′(c) · ρ′(c)

≤
∑

c∈f−1(s)

d′(c) · p
′(Cx(s))
d′(Cx(s))

= d′(f−1(s)) · p
′(Cx(s))
d′(Cx(s))

≤ δ · d(f−1(s)) · p
′(Cx(s))
d′(Cx(s)) ≤

δ

α
p′(Cx(s)) ≤ πδ

α
p(Cx(s)) ,

where the third inequality is due to (1).
It remains to bound the approximation ratio:

p(Cx∗) =
∑

c∈Cx∗∩Cx

p(c) +
∑

c∈Cx∗\Cx

p(c)

≤
∑
c∈Cx

p(c) +
∑
s∈F

p(f−1(s))

≤ p(Cx) +
∑
s∈F

πδ

α
p(Cx(s)) ≤ p(Cx) + k · πδ

α
p(Cx) = α+ πδk

α
· p(Cx) ,

where the last inequality holds because each client is assigned to k servers.

We note that a similar proof can be given with comparison to an optimal fractional solution as was
done in [1] for the case of k = 1.

Furthermore, we show that the analysis of α-Greedy is almost tight. Consider the following k-SA
instance for the case where 1 − α = 1

q , for q ∈ N. Let C = {c1, c2, . . .} be a set of q(k + 1) − 1 clients
and S = {s1, s2, . . .} be a set of 2k − 1 servers. For i ≤ q − 1, let d(ci) = q, p(ci) = qt + 1, and
N(ci) = {s1, . . . , sk}, while for i ≥ q, let d(ci) = q, p(ci) = qt, and N(ci) = S. As for server capacities,
cap(si) = q2, for i ≤ k, and cap(si) = kq2, for i > k. If we run α-Greedy (assuming δ = π = 1), it will
consider clients c1, . . . , cq−1 first and assigns all of them. This renders servers s1, . . . , sk α-saturated, so
that no other clients will receive service. Thus, α-Greedy obtains a profit of (q − 1)(qt + 1), while an
optimal solution services clients cq, . . . , cq(k+1)−1 for a profit of kq·qt = kqt+1. Hence, the approximation
ratio of α-Greedy is at least kqt+1

(q−1)(qt+1) , which goes to k
α as t goes to infinity.

We get our first result by assigning α = 1− r and δ = π = 1.

6

Corollary 3. If δ = π = 1, the approximation ratio of (1− r)-Greedy is at most k+1−r
1−r .

Our next result is obtained by assigning α = 1 and δ = π = 1. Notice that in this case the server
capacity constraints may be violated, but not by much.

Lemma 4. Given an r-restricted k-SA instance, let x be a k-service assignment computed by 1-Greedy
with δ = π = 1. Then, the load on any server s is less than (1 + r) · cap(s). Moreover, if we remove the
last client assigned to each overloaded server we obtain a feasible k-service assignment.

Proof. By the algorithm design, an overloaded server s was non-1-saturated when the last client was
assigned to it. The load of a non-1-saturated server is less than its capacity, while the last client assigned
to s has a demand of at most r · cap(s).

From Lemma 4 we get that 1-Greedy obtains an approximation ratio of k + 1 with a resource
augmentation factor (1 + r).

Corollary 5. If δ = π = 1, then 1-Greedy is a (k + 1)-approximation algorithm for r-restricted k-SA
that uses (1 + r) times the capacity of each server.

In the next lemma we show that the non-feasible solution that is computed by 1-Greedy can be
partitioned into k + 1 feasible solutions.

Lemma 6. Given a k-SA instance, let x be a k-service assignment computed by 1-Greedy with δ =
π = 1. Then, x can be partitioned into k + 1 feasible k-service assignments.

Proof. Consider the directed conflict graph G′ = (Cx, E′), where E′ contains an arc (c, c′) if and only
if 1-Greedy assigned both c and c′ to a server s and c was the last client assigned to s. The maximum
in-degree of G′ is at most k for the simple reason that x assigns at most k servers to each client.
Furthermore, the graph G′ is a DAG, since an edge (c, c′) always points from a client c to a client c′
that was considered by 1-Greedy prior to c. It follows that the underlying graph of G′ is k-degenerate
(or k-inductive), and therefore can be (k + 1)-colored [10]. For completeness, we provide the following
simple recursive algorithm that (k + 1)-colors G′:
• If the graph is empty, return an empty coloring.
• Find a node v with out-degree zero. Such a node always exists as the graph is a DAG.
• Remove v from the graph and color the remaining graph recursively.
• Color node v with the smallest available color. Since only k neighbors of v have already received
a color – only the in-neighbors – at least one of the first k + 1 colors is free.
• Return the coloring.

The coloring of G′ is a partition of Cx into k + 1 independent sets. We show that an independent set
induces a feasible solution. Let I be an independent set and let xI be the solution restricted to I, that
is xI(c, s) = x(c, s), if c ∈ I, and xI(c, s) = 0, otherwise. If I contains the last client assigned to a server
s, then I does not contain any other clients assigned to s. It follows that xI is feasible.

This leads to the last result of the section.

Corollary 7. There exists a (k + 1)2-approximation algorithm for k-SA.

Proof. First, 1-Greedy, with δ = π = 1, computes a possibly non-feasible (k + 1)-approximate service
assignment due to Corollary 5. Lemma 6 implies that x can be partitioned into k+ 1 feasible solutions
x1, . . . , xk+1. Since p(Cx) =

∑k+1
i=1 p(Cxi), there exists i such that p(Cxi) ≥ 1

k+1p(Cx).

4 Distributed Greedy Algorithm
In this section, we present distributed approximation algorithms for k-SA by providing a distributed
implementation of Algorithm α-Greedy. More specifically, we present (i) a k+1−r

1−r (1+γ)-approximation
algorithm for r-restricted k-SA, (ii) a (k + 1)(1 + γ)-approximation algorithm that uses a resource

7

augmentation factor 1 + r for r-restricted k-SA, and (iii) a O(k2)-approximation algorithm for k-SA,
all for any constant γ > 0. The three algorithms terminate in O(k2γ−2 polylog(n)) rounds.

We first give a distributed algorithm that relies on the assumption that all nodes know pmax. We
then give a modification that does not need this assumption, but relies on the assumption that each
server s knows the demands and profits of the clients in N(s). We start the section by classifying the
clients.

4.1 Client Classification
The basic idea of our distributed algorithm is to mimic the sequential α-Greedy. The challenge is
to parallelize the computation of the assignment as dealing with clients one-by-one would yield linear
running time. The key is to efficiently compute the assignment of multiple clients with equal profit and
equal demand. To enlarge the number of clients with equal profit and demand, we apply an implication
of Lemma 2: we may round profits and demands up to the closest power of 1 + ε, for some ε > 0,
increasing the approximation ratio by at most a factor of (1 + ε)2.

We first classify all clients by demand and profit. Define

Ci` ,
{
c ∈ C : d(c) ∈ ((1 + ε)i−1, (1 + ε)i] ∧ p(c) ∈ ((1 + ε)i+`−1, (1 + ε)i+`]

}
,

and C` ,
⋃
i C

i
`. Also, define the rounded demand and profit for all clients c ∈ Ci` as

d′(c) , (1 + ε)i

p′(c) , (1 + ε)i+` .

Note that all clients in C` have equal cost-effectiveness with respect to the rounded profits and demands,
namely ρ′(c) = p′(c)

d′(c) = (1 + ε)`. That means that the clients in C` can be considered by Algorithm α-
Greedy in any order. Also note that

d′(c) ∈ [d(c), (1 + ε)d(c))
p′(c) ∈ [p(c), (1 + ε)p(c))
ρ′(c) ∈ ((1 + ε)−1ρ(c), (1 + ε)ρ(c)) .

For the remainder of the section, we mostly consider rounded profits and demands.

4.2 Distributed Implementation of α-Greedy
We are ready to describe a distributed implementation of Algorithm α-Greedy that relies on the
assumption that all nodes know pmax. The algorithm is described in a top-down manner.

By assumption, the cost-effectiveness is polynomially bounded in n. Given the values ρmin and
ρmax, we can find an interval [W,W ′] such that C` 6= ∅ only if ` ∈ [W,W ′]. This is the case for
W =

⌊
log1+ε(ρmin)

⌋
and W ′ =

⌈
log1+ε(ρmax)

⌉
. Note that W ′ −W ∈ O(log1+ε n) ⊆ O(ε−1 logn).

Define C≥z ,
⋃
`≥z C` and assume that there is an algorithm called Augment that augments

a k-service assignment for C≥`+1 into a k-service assignment for C≥`. Algorithm Dist-α-Greedy
(Algorithm 2) uses Augment iteratively to construct a k-service assignment. Clearly Dist-α-Greedy
runs for O(TAε−1 logn) rounds, where TA is the running time of Augment.

Algorithm 2 : Dist-α-Greedy(C, S,E, d, p, cap)
1: x← 0
2: for ` = W ′ downto W do
3: x← Augment(C, S,E, cap, `, x)
4: end for

8

As shown in the sequel, AlgorithmAugment considers the subclasses of C` one by one and augments
the given k-service assignment with a k-service assignment for each Ci`. In order to keep the running
time of our algorithm poly-logarithmic, we use the next result showing that only considering O(log1+ε n)
subclasses per class C` does not increase the approximation ratio by much.

A client c ∈ C is called heavy if p′(c) > p′max
n3 . Otherwise, it is called light. Recall that p′max =

maxc∈C p′(c). Define Cheavy , {c ∈ C : p′(c) > p′max
n3 }. The next lemma explains why we can simply

ignore light clients.

Lemma 8. Let x be an optimal k-service assignment and let y be an optimal k-service assignment for
the same instance but restricted to a set C̃, where C̃ ⊇ Cheavy. Then p(Cx) ≤ (1 + 1

n2)p(Cy).

Proof. Observe that each client c 6∈ C̃ satisfies p(c) ≤ pmax
n3 . Clearly, p(Cx) ≥ p(Cy) ≥ pmax, and thus

we have that

p(Cx) = p(Cx ∩ C̃) + p(Cx \ C̃) ≤ p(Cy) + n · pmax

n3 = p(Cy) + pmax

n2 ≤
(

1 + 1
n2

)
p(Cy)

which concludes the proof.

Following the above result, Algorithm Augment (Algorithm 3) considers only the subclasses Ci`
which contain heavy clients. The heavy clients are contained in at most

⌈
3 log1+ε n

⌉
subclasses of

C`. For each subclass, Augment uses Algorithm Uniform-Augment which augments the current
k-service assignment with an assignment for the specified subclass Ci`. Recall that all clients in Ci` have
the same profit and demand (with respect to p′ and d′).

Algorithm 3 : Augment(C, S,E, cap, `, x)
1: imax

` ← log1+ε p
′
max − `

2: for i = imax
` downto imax

` −
⌈
3 log1+ε n

⌉
+ 1 do

3: x← Uniform-Augment(C, S,E, cap, i, `, x)
4: end for
5: return x

Clearly, if Algorithm Uniform-Augment requires TU rounds, then Augment terminates af-
ter O(TU log1+ε n) ⊆ O(TUε−1 logn) rounds. It follows that Algorithm Dist-α-Greedy requires
O(TUε−2 log2 n) rounds.

As mentioned before, Algorithm Uniform-Augment is used to compute a k-service assignment
for all clients in a given subclass Ci` that augments a given k-service assignment x. Recall that clients
have uniform demands, i.e., d′(c) = (1 + ε)i for each c ∈ Ci`. Hence, given a solution x and a server
s, an upper bound mi

`(x, s) on the number of clients from Ci` that can be assigned to s while it is not
α-saturated can be computed as follows:

mi
`(x, s) = min

{
max

{
0,
⌈
α · cap(s)− d′(Cx(s))

(1 + ε)i

⌉}
,deg(s)

}
.

A star centered at a client c ∈ C is a subgraph of G that contains c and k servers adjacent to c. We
call the servers the leaves of the star. Per server s ∈ S we introduce mi

`(x, s) copies denoted s1, s2, and
so forth. An incarnation of a star replaces each leaf s with a copy sq, where 1 ≤ q ≤ mi

`(x, s). Note that
incarnations never have two leaves which are copies of the same server. Also note that some stars have
no incarnations, namely if mi

`(x, s) = 0 for some leaf s. We define the graph H(i, `, x). The vertex set of
H(i, `, x) contains all possible incarnations of stars centered at a client c ∈ Ci`. There is an edge between
two nodes of H(i, `, x), namely between two incarnations, if and only if the two are either centered at the
same client or share a common leaf (copy of a server). Given i, `, and x, AlgorithmUniform-Augment
(Algorithm 4) constructs H(i, `, x) and computes a maximal independent set (MIS) in H(i, `, x).

9

Algorithm 4 : Uniform-Augment(C, S,E, cap, i, `, x)
1: MIS ← Maximal Independent Set of H(i, `, x)
2: Augment x with k-service assignment corresponding to MIS
3: return x

The computation of the MIS is based on Luby’s algorithm [16]. In fact we rely on the analysis of
Wattenhofer [24] that shows that the MIS algorithm terminates with high probability after O(logN)
rounds, where N is the number of nodes in the graph. In the next lemma we show how to implement
the algorithm such that the number of rounds is O(k2 logn).

Lemma 9. Algorithm Uniform-Augment computes an α-maximal service assignment with high prob-
ability in O(k2 logn) rounds.

Proof. Consider the graph H(i, `, x) = (V (i, `, x), E(i, `, x)). For a client c ∈ C, there are
(deg(c)

k

)
stars

centered at c. For each star there are at most nk different incarnations, as there are at most deg(s) ≤ n
copies of each server s. It follows that, per client c of G, the vertex set V (i, `, x) contains at most(deg(c)

k

)
nk ≤ n2k vertices. So in total, V (i, `, x) contains

n(i, `, x) , |V (i, `, x)| ≤ n2k+1

vertices (incarnations of stars of G).
We would like to execute Luby’s algorithm [16] to compute a maximal independent set in H(i, `, x).

Let M = ∅ and M = V (i, `, x). Luby’s algorithm repeatedly executes the following procedure:
• Each incarnation in M is assigned a random priority with O(k logn) bits.
• Let U be the set of incarnations with a priority higher than any adjacent incarnation.
• All incarnations in U are added to M and removed from M . Also, all incarnations adjacent to
incarnations in U are removed from M .

With high probability, M is a maximal independent set after the above procedure has been executed
O(k logn) times [24].

We now describe how the above procedure can be simulated on the graph G:
1. A client c ∈ Ci` draws a random priority for each incarnation in M centered at c. Per client, only

the incarnation with the highest priority is relevant to Luby’s algorithm. Thus for each leaf sq of
such an incarnation, clients send the priority and the index q to s. Note that each client sends at
most one message to each adjacent server.

2. Per copy, each server determines the highest priority received. The server sends an ACK message
to the clients that sent the winning (highest) priorities and a NACK message to clients that sent
the losing priorities.

3. If a client c receives k ACK messages, then the incarnation with the highest priority centered at
c joins the independent set and all other incarnations centered at c are removed from M . Per leaf
sq of an incarnation joining the MIS, the clients inform server s that the copy with index q has
been taken.

4. Servers keep track which copies have been taken and inform the clients which copies are no longer
available. Clients remove all incarnations with unavailable leaves from M .

We examine the messages exchanged during this procedure and their sizes in bits. In the first
step each client sends a priority and server copy index to k servers, therefore the message size is
O(k logn+ logn) ⊆ O(k logn). In the second step each server sends a single ACK/NACK message to
clients whose size is O(1). Winning clients send a single server copy index to k servers. The message
size is O(logn). Finally, servers need to update clients on which copy cannot be used anymore. The
naive solution is a message that may require Ω(n) bits (a bit vector with one bit per server copy).

Recall that for each star there are O(nk) different incarnations. Since these incarnations are inter-
changeable, server copies may be relabeled after each iteration such that the available copies have the
smallest possible indexes. It follows that the number of available copies per server, and not the actual

10

server copy indexes, is important. In conclusion, it suffices to inform the clients only about the number
of available copies per server. This can be done using a message of size O(logn) bits.

The above procedure takes O(1) rounds when assuming messages of size O(k logn) or O(k) rounds
using messages of size O(logn) bits. As the procedure needs to be executed O(k logn) times, we have
that the total number of rounds is O(k2 logn).

Finally, the computed solution is α-maximal, since otherwise the independent set in H(i, `, x) is not
maximal.

We note that a client c need not draw one random priority for each incarnation in M centered at
c. As c is aware of the number of available copies per adjacent server, it is easy to count the number
of incarnations in M centered at c. Let z be this number. It then suffices to choose one of the z
incarnations uniformly at random and to draw its priority from the distribution of the maximum over
z random priorities (see, e.g., [9]).

We bound the running time of Algorithm Dist-α-Greedy.

Lemma 10. Algorithm Dist-α-Greedy terminates with high probability in O(k2ε−2 · log3 n) rounds.

Proof. AlgorithmDist-α-Greedy consists of O(ε−1 logn) invocations of Augment, which in turn con-
sists of O(ε−1 logn) invocations of Uniform-Augment. The lemma follows sinceUniform-Augment
requires O(k2 logn) rounds according to Lemma 9.

Next, we analyze the computed solution. In preparation for Section 4.3, the next result is slightly
more general than necessary.

Lemma 11. Given a k-SA instance, Algorithm Dist-α-Greedy mimics α-Greedy on a set C̃ ⊇ Cheavy
using the rounded profits p′ and the rounded demands d′.

Proof. Notice that Algorithm Dist-α-Greedy considers CW ′ , . . . , CW in decreasing order of `. Since
all clients in C` have the same cost-effectiveness, (1 + ε)`, it follows that the algorithm augments x
according to a non-increasing order of client cost-effectiveness with respect to p′ and d′. For each
`, Algorithm Augment considers subclasses Ci` in a decreasing order of i, that is in a decreasing
order of both profit and demand. For each i, Uniform-Augment computes an α-maximal solution,
as shown in Lemma 9, by adding clients with the same profit, demand, and cost-effectiveness in an
order that is induced by the random choices of the maximal independent set computation. Hence,
Algorithm Augment can be seen as trying to service clients with the same cost-effectiveness in an
arbitrary order. It follows that Dist-α-Greedy is a specific implementation of α-Greedy.

It remains to show that Augment considers all heavy clients in each class C`. Let c ∈ C` be a
client not considered by Augment. Then c ∈ Ci` with i ≤ imax

` −
⌈
3 log1+ε n

⌉
and we have that

p′(c) = (1 + ε)i+` ≤ (1 + ε)i
max
` +`−d3 log1+ε ne = (1 + ε)log1+ε p

′
max−d3 log1+ε ne ≤ p′max

n3 ,

and thus c is a light client.

The previous lemma allows us to find a lower bound on the profit of the solution that is computed
by Dist-α-Greedy.

Lemma 12. Given a k-SA instance, let x be the solution computed by Dist-α-Greedy using p′ and
d′, and let x∗ be an optimal solution with respect p and d. Then, we have that p(Cx) ≥ 1

1+1/n2 · 1
(1+ε)2 ·

α
k+αp(Cx∗).

Proof. Let y∗ be an optimal solution with respect to p, d, and C̃ ⊇ Cheavy. We have that p(Cx∗) ≤
(1 + 1

n2)p(Cy∗) by Lemma 8. Furthermore, p(Cx) ≥ 1
(1+ε)2 · α

k+αp(Cy∗) due to Lemmas 2 and 11 and
the definition of p′ and d′. The claim follows.

Lemma 13. Let γ > 0 be a constant. There exists distributed ((1 + γ)k+α
α)-approximation algorithm

for k-SA that terminates with high probability in O(k2γ−2 · log3 n) rounds.

11

Proof. If γ < 4
n2 , then n ≤ 2/√γ which means that n = O(1). In this case, an optimal solution can

be computed in O(1) rounds as follows: each node sends its input to the node with highest id, which
computes an optimal solution and broadcasts it to all nodes.

If γ ≥ 4
n2 , then set ε = γ/4 and run Dist-α-Greedy. In this case we have that

(1 + 1
n2) · (1 + ε)2 ≤

(
1 + γ

4

)3
=
(

1 + 3γ
4 + 3γ2

16 + γ3

64

)
< 1 + γ .

The rest follows from Lemmas 10 and 12.

By setting α = 1− r, Lemma 13 leads to the following result:

Corollary 14. There exists distributed ((1 + γ)k+1−r
1−r)-approximation algorithm for r-restricted k-SA

that terminates with high probability in O(k2γ−2 · log3 n) rounds, for every γ > 0.

We can obtain a better ratio using resource augmentation, i.e., by setting α = 1.

Corollary 15. There exists distributed (1 + γ)(k + 1)-approximation algorithm for r-restricted k-SA
that uses at most (1 + r) times the capacity of each server and terminates with high probability in
O(k2γ−2 · log3 n) rounds, for every γ > 0.

As in the centralized case (Lemma 6) we use the resource augmentation algorithm in order to obtain
a feasible service assignment. However, in the distributed setting we use random selection instead of
using coloring.

Theorem 16. There exists distributed algorithm for k-SA that terminates with high probability in
O(k2γ−2 · log3 n) rounds and computes solutions whose expected profit is at least p(Cx∗)/((1+γ) ·4k(k+
1)), for any γ > 0, where x∗ is an optimal solution.

Proof. We present a distributed randomized algorithm that computes a service assignment whose ex-
pected profit is at least the optimum divided by (1 + γ) · 4k(k + 1), for any constant γ > 0.

The first phase of the algorithm is to compute a (1 + γ)(k + 1)-approximate solution x for k-SA
that uses at most (1 + r) times the capacity of each server. By Corollary 15 this takes O(k2γ−2 · log3 n)
rounds. The solution is either already feasible or was computed by Dist-1-Greedy (see Lemma 13).
In the latter case, consider the set of clients that were last assigned to s by an invocation of Uniform-
Augment and choose as c(s) the client with the largest identifier.

Recall the definition of the conflict graph G′ = (Cx, E′) from Lemma 6. The set E′ contains an edge
between two clients (c, c′) if c and c′ are both assigned to a server s and c = c(s). The second phase is
to compute an independent set I of G′. As shown in the proof of Lemma 6, restricting x to the clients
in I yields a feasible solution.

We exploit that G′ is a DAG with in-degree at most k. Let β > 1 and U = ∅. Add each client c ∈ Cx
to U independently with probability 1

βk . Then let I ⊆ U be the set of clients with no in-neighbor in
U . Clearly I is an independent set of G′. By the Union Bound, a node has an in-neighbor in U with
probability at most k · 1

βk = 1
β . Thus, a node of Cx is in I with probability at least 1

βk (1− 1
β) = β−1

β2k .
We choose β = 2 to maximize β−1

β2 , so a node of Cx is in I with probability 1
4k . Thus E[p(I)] ≥ 1

4kp(Cx).
The set I can be easily constructed by the following distributed algorithm. Every client in c ∈ Cx

informs each server s with x(c, s) = 1 whether c ∈ U . A server s responds to a client c ∈ U with a
NACK message if c 6= c(s) and c(s) ∈ U , and with an ACK message otherwise. If a client c ∈ U receives
no NACK message, then c ∈ I. Otherwise, c informs its servers that c 6∈ I.

4.3 Modification
In the remainder of this section, we describe a modified version of Augment, called Modified-
Augment, that does not assume knowledge of pmax. Instead, we assume that each server s knows
the demand d(c) and the profit p(c) of each adjacent client c ∈ N(s), as explained in Section 2.

12

c1

1
c2

1
c3

1
c4

2
c5

3
c6

4

s1

1
s2

1
s3

2
s4

3
s5

4

Figure 2: Each client is labeled with the index of its class, each server is labeled with imax
` (s).

Without knowledge of pmax, intuitively, we would like to start with the non-empty subclass Ci` with
maximum index i. A naive approach, such as determining the maximum index i and making it known
to all nodes, would require time proportional to the network diameter. Our algorithm avoids this issue
by using the index

imax
` (s) = max{i : Ci` ∩N(s) 6= ∅} ,

for each server s ∈ S. See Figure 2 for an example. As the demands and profits are known, a server s
can easily determine imax

` (s).
Algorithm Modified-Augment works as follows. In each iteration of a loop starting at i = imax

` (s)
and counting downwards, each server s sends a START message to each adjacent client in class Ci`. It
then runs Algorithm Uniform-Augment for index i. The execution of Uniform-Augment for index
i is restricted to the graph G(i, `) = (Ci`, S, E ∩ (Ci` × S)). Thus, a client c ∈ Ci` may only receive
messages due to an execution of Uniform-Augment for index i.

A client c ∈ Ci` doesn’t run Algorithm Uniform-Augment for index i straightaway. Instead, it
waits until all adjacent servers have sent a START message. While delaying the execution of Uniform-
Augment, incoming messages for Uniform-Augment are saved by c and delivered later when its
execution starts.

As messages are delayed and since Uniform-Augment was written for the synchronous model, we
use an α-synchronizer to execute Uniform-Augment. Also, we assume that the synchronizer counts
how many synchronous rounds Uniform-Augment has been executed for. This serves as a means of
termination detection. Let TU be the worst-case running time of Uniform-Augment in synchronous
rounds. After starting an execution of Uniform-Augment for a particular index, servers and clients
wait until the synchronizer has completed TU synchronous rounds of Uniform-Augment. Once this
has happened, clients update the k-service assignment and servers continue with the next iteration of
the loop over i.

Consider the graph shown in Figure 2. In the first round, servers s1 and s2 send a START message
to c1, c2, and c3. So servers s1 and s2 as well as clients c1 and c2 start executing Uniform-Augment
for class C1

` . However, client c3 will locally delay the execution of Uniform-Augment for class C1
`

until it received a START message from server s3. This will only happen after s3 and c4 have finished
executing Uniform-Augment for class C2

` . This in turn will be delayed until s4 and c5 have finished
executing Uniform-Augment for class C3

` . We observe that the execution of Uniform-Augment
for some class Ci` is delayed for at most (i` − i) ·O(TU) rounds, where i` = maxs∈S imax

` (s).
As we do not need to consider all subclasses of C` but mainly subclasses with heavy clients, we

simply stop the execution of Modified-Augment after O(TUε−1 logn) rounds and take the k-service
assignment computed by then. Abruptly stopping the execution may render the local view of the
computed k-service assignment by clients and servers inconsistent. This can be fixed within one round
by letting each client c send the value x(c, s) to each adjacent server s. As the following result shows,
the given time bound suffices to let Modified-Augment consider all heavy clients.

Lemma 17. With high probability, Algorithm Modified-Augment requires O(k2ε−1 log2 n) rounds to
run Uniform-Augment for all subclasses of C` that contain heavy clients.

Due to space constraints, the listing of Algorithm Modified-Augment and the proof of Lemma 17
have been omitted. Algorithm Modified-Augment is a drop-in replacement for Algorithm Augment

13

in the sense that it preserves all significant properties of Augment: (i) All subclasses of C` with heavy
clients are considered, (ii) Modified-Augment has the same asymptotic runtime as Algorithm Aug-
ment, and (iii) the subclasses Ci` are (locally) considered in decreasing order of index i. We conclude
that in particular Lemmas 10 and 11 remain true if Augment is replaced with Modified-Augment
(details are omitted). As all subsequent results in Section 4.2 are mainly derived from these two lemmas,
they also remain true.

Acknowledgements. We thank Boaz Patt-Shamir for helpful discussions.

References
[1] D. Amzallag, R. Bar-Yehuda, D. Raz, and G. Scalosub. Cell selection in 4g cellular networks. IEEE

Trans. Mobile Comput., 12(7):1443–1455, 2013.

[2] B. Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823, 1985.

[3] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach to approxi-
mating resource allocation and schedualing. J. ACM, 48(5):1069–1090, 2001.

[4] R. Bar-Yehuda, K. Bendel, A. Freund, and D. Rawitz. Local ratio: A unified framework for
approximation algorithms. ACM Comput. Surv., 36(4):422–463, 2004.

[5] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex cover
problem. Annals of Discrete Mathematics, 25:27–46, 1985.

[6] C. Chekuri and S. Khanna. On multidimensional packing problems. SIAM J. Comput., 33(4):837–
851, 2004.

[7] C. Chekuri and S. Khanna. A polynomial time approximation scheme for the multiple knapsack
problem. SIAM J. Comput., 35(3):713–728, 2005.

[8] M. Dawande, J. Kalagnanam, P. Keskinocak, F. S. Salman, and R. Ravi. Approximation algo-
rithms for the multiple knapsack problem with assignment restrictions. Journal of Combinatorial
Optimization, 4(2):171–186, 2000.

[9] Y. Emek, M. M. Halldórsson, Y. Mansour, B. Patt-Shamir, J. Radhakrishnan, and D. Rawitz.
Online set packing. SIAM J. Comput., 41(4):728–746, 2012.

[10] P. Erdös and A. Hajnal. On chromatic number of graphs and set-systems. Acta Mathematica
Hungarica, 17(1–2):61–99, 1966.

[11] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko. Tight approximation algorithms
for maximum general assignment problems. In 17th SODA, pages 611–620, 2006.

[12] A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional 0−1 knapsack
problem: worst-case and probabilistic analyses. European Journal of Operational Research, 15:100–
109, 1984.

[13] M. M. Halldórsson, S. Köhler, B. Patt-Shamir, and D. Rawitz. Distributed backup placement in
networks. In 27th ACM SPAA, pages 274–283, 2015.

[14] E. Hazan, S. Safra, and O. Schwartz. On the complexity of approximating k-set packing. Compu-
tational Complexity, 15(1):20–39, 2006.

[15] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of subset
problems. J. ACM, 22(4):463–468, 1975.

14

[16] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput.,
15(4):1036–1053, 1986.

[17] M. J. Magazine and M.-S. Chern. A note on approximation schemes for multidimensional knapsack
problems. Mathematics of Operations Research, 9(2):244–247, 1984.

[18] B. Patt-Shamir, D. Rawitz, and G. Scalosub. Distributed approximation of cellular coverage. J.
Parallel Distrib. Comput., 72(3):402–408, 2012.

[19] D. Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.

[20] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

[21] S. Sahni. Approximate algorithms for the 0/1 knapsack problem. J. ACM, 22(1):115–124, 1975.

[22] D. B. Shmoys and É. Tardos. An approximation algorithm for the generalized assignment problem.
Mathematical Programming, 62:461–474, 1993.

[23] A. Srinivasan. Improved approximation guarantees for packing and covering integer programs.
SIAM J. Comput., 29(2):648–670, 1999.

[24] R. Wattenhofer. Principles of distributed computing: Maximal independent set. http://www.dcg.
ethz.ch/lectures/fs15/podc/lecture/chapter7.pdf. Accessed 2015-08-27.

15

http://www.dcg.ethz.ch/lectures/fs15/podc/lecture/chapter7.pdf
http://www.dcg.ethz.ch/lectures/fs15/podc/lecture/chapter7.pdf

	Introduction
	Preliminaries
	Centralized Greedy Algorithm
	Distributed Greedy Algorithm
	Client Classification
	Distributed Implementation of -Greedy
	Modification

