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In recent years, small �ying robots have become a popular platform in robotics due
to their low cost and versatile use. In the context of autonomous navigation, low-cost
robots are often equipped with imprecise sensors and actuators and require a proper
calibration and carefully designed and learned models. External systems like motion
capture cameras usually provide accurate pose estimates for such devices. However,
they do not provide the translational and rotational velocities and accelerations of
the object. In this paper, we present an algorithm for accurate calculations of the
six-dimensional velocity and the six-dimensional acceleration from a possibly noisy
pose time sequence. We compute the velocities and accelerations in a regression
using Newton's equation of motion as the model function. Thereby, we e�ciently
decouple the six individual dimensions and account for �ctitious forces in the non-
inertial body-�xed frame of reference. In simulation and experiments with a real
inertial measurement unit (IMU), we show that our algorithm provides accurate
velocity and acceleration estimates compared to the reference data.

1 Introduction

Nowadays, the robotics community has an increasing interest in the third dimension. Especially
small �ying robots like quadrotors and miniature airships are becoming broadly available. Such
robots are usually equipped with cheap sensors and can perform tasks such as environmental
monitoring, surveillance, communication, and mapping [1, 3, 4, 6, 7]. However, these favorable
properties come at the cost of some challenges with respect to autonomous navigation. Their
low-cost and comparably simple actuators and sensors typically induce a substantial motion
uncertainty and provide rather low-precision measurement data. This data can still be useful
as long as the devices are carefully calibrated and modeled, which requires accurate reference
data [5]. Although the poses obtained at high frequency from motion capture systems are a
useful reference, often also accurate velocity and acceleration data of the robot is required for
calibration and model training.
In this paper, we present an algorithm that computes the velocities and the accelerations

from a sequence of poses with corresponding timestamps. We provide a set of algorithms that
can be adapted and combined for di�erent tasks in a �exible way. Our approach is hereby
inherently useful, as we can e�ciently calculate the regressions in each dimension individually.
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Additionally, our approach treats �ctitious forces in a self-consistent way, i.e., the regression
itself provides the necessary data to account for the Coriolis coupling in six dimensions.
Furthermore, for the interested reader, we give a sound background on the theory behind

the algorithms, including the applied constant acceleration motion model, the derivation of
the regression model and the correct treatment of �ctitious forces. Finally, we validate our
algorithm in simulation experiments and with real data of an inertial measurement unit (IMU).
We compare the velocities and accelerations computed using our algorithm with those generated
by an indoor blimp simulator and the measurements of the gyroscopes and the accelerometers
of an IMU.

2 Problem Formulation

In this paper, we consider the problem of estimating the time-dependent velocities and accel-
erations in body-�xed coordinates of a rigid body moving freely in three-dimensional space.
The input data is given by an external system, e.g., by a motion capture system, in form of
a trajectory of positions p = [x, y, z]T and orientations q = [q0, q1, q2, q3]T represented by unit
quaternions [2].
The full dynamics of the device can be described by the state

x (t) =
[
pT (t),qT (t),vT (t),ωT (t),aT (t),αT (t)

]T
, (1)

with the translational velocity v = [vx, vy, vz]
T , the angular velocity ω = [ωx, ωy, ωz]

T , the trans-

lational acceleration v̇ = a = [ax, ay, az]
T and the angular acceleration ω̇ = α = [αx, αy, αz]

T .
All velocities and accelerations are expressed in the body-�xed frame of reference. The input
trajectory is given as a sequence of n poses(

(p1,q1, t1), . . . , (pn,qn, tn)
)

(2)

with associated time stamps ti. In this discrete trajectory, the positions and orientations are
expressed in the global frame of reference with the z-axis pointing upwards.
We consider the problem of estimating the translational and rotational velocities and acceler-

ations, which are corresponding to each pose of the input trajectory. The result of our algorithm
enables us to formulate the input trajectory with the full state information as(

(p1,q1,v1,ω1,a1,α1, t1), . . . , (pn,qn,vn,ωn,an,αn, tn)
)
. (3)

2.1 Assumptions

Assuming a certain locality in the trajectory data, we choose a small time window ∆t around
the target time, at which the velocity and acceleration is to be determined. If ∆t is su�ciently
small, we can safely assume a constant acceleration within the window and the dynamics of the
object are fully described by its position, its velocities, and its accelerations in every dimension.
Of course, ∆t must be big enough to get a certain number of data points around the given time
step to compute a reasonable regression.
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3 Approach

Our approach to compute translational and rotational velocities and accelerations of an object
moving in three-dimensional space given a discrete trajectory is the following:

1. De�ne a time window ∆t large enough to span several time steps, but small in comparison
to the dynamics of the trajectory.

2. Step through the trajectory and run a regression for each time window according to Algo-
rithm 3.
The velocity and acceleration in each single regression is calculated as follows:

a) Separate the problem into one-dimensional regressions on each individual dimension
of the translational and rotational data according to Algorithm 2.

b) Run the one-dimensional regression on the individual dimensions to obtain the �rst
and second derivatives in each dimension according to Algorithm 1.

c) Transform the results (�rst and second derivatives) in the individual dimensions to
the body-�xed frame of reference according to Algorithm 2.

d) Account for �ctitious forces in the non-inertial body-�xed frame of reference according
to Algorithm 2.

For a detailed explanation and a derivation of the individual steps, the reader is referred to the
Sections 3.1�.

Algorithm 1 MotionRegression1D

Input: A sequence of values
(
(x1, t1), . . . , (xn, tn)

)
with corresponding time stamps and a target

time t.

Output: The �rst derivative v := ẋ(t) and second derivative a := ẍ(t) at the target time t.

1: // compute various sums over regression window

2: (sx, stx, st2x, st, st2 , st3 , st4)← (0, . . . , 0)

3: for i = 1 to n do

4: ti ← ti − t
5: sx ← sx + xi
6: stx ← stx + xi · ti
7: st2x ← st2x + xi · t2i
8: st ← st + ti
9: st2 ← st2 + t2i

10: st3 ← st3 + t3i
11: st4 ← st4 + t4i
12: end for

13: // matrix inversion pre-factor

14: A← n (st3 st3 − st2 st4) + st (st st4 − st2 st3) + st2 (st2 st2 − st st3)

15: // velocity at time t

16: v ← A−1 (sx (st st4 − st2 st3) + stx (st2 st2 − n st4) + st2x (n st3 − st st2))

17: // (constant) acceleration

18: a← 2A−1 (sx (st2 st2 − st st3) + stx (n st3 − st st2) + st2x (st st − n st2))

19: return (v, a)
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Algorithm 2 MotionRegression6D

Input: A sequence of positions and orientations T =
(
(p1,q1, t1), . . . , (pn,qn, tn)

)
with corre-

sponding time stamps and a target time t as well as the orientation qt at time t.

Output: The translational and rotational velocities v,ω and accelerations a,α in the body-

�xed frame of reference at the target time t.

1: (v,ω,a,α)← (0, . . . ,0)

2: (q̇, q̈)← (0,0) // initialize quaternion rates with zero in all dimensions

3: // run motion regressions independently in every dimension

4: for all i ∈ {x, y, z} do
5: (vi,ai)← MotionRegression1D

((
(pi,1, t1), . . . , (pi,n, tn)

)
, t
)

6: end for

7: for all i = 0 to 3 do

8: (q̇i, q̈i)← MotionRegression1D
((

(qi,1, t1), . . . , (qi,n, tn)
)
, t
)

9: end for

10: // Transform the derivatives to the body-�xed frame of reference.

Here, q̄ is the adjoint of the unit quaternion q and � is the quaternion product [2].

11: [ 0
v ]← q̄t � [ 0

v ]� qt

12: [ 0
a ]← q̄t � [ 0

a ]� qt

13: [ 0
ω ]← 2 q̄t � q̇

14: [ 0
α ]← 2 q̄t � q̈

15: // account for �ctitious forces

16: a← a− ω × v

17: return (v,ω,a,α)

Algorithm 3 PoseTimeSequenceRegression

Input: The pose time sequence (trajectory) T =
(
(p1,q1, t1), . . . , (pn,qn, tn)

)
given as posi-

tions and orientations with corresponding time stamps and the regression window ∆t.

Output: The sequence of translational and rotational velocities and accelerations(
(v1,ω1,a1,α1), . . . , (vn,ωn,an,αn)

)
corresponding to the input trajectory.

1:

(
(v1,ω1,a1,α1), . . . , (vn,ωn,an,αn)

)
←
(
(0, . . . ,0), . . . , (0, . . . ,0)

)
2: for i = 1 to n do

3: T ′ ← {(pj ,qj , tj) | tj ∈ [ti −∆t/2, ti + ∆t/2]} // extract regression window of ti
4: (vi,ωi,ai,αi)← MotionRegression6D(T ′, ti)

5: end for

6: return
(
(v1,ω1,a1,α1), . . . , (vn,ωn,an,αn)

)
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Figure 1: The �rotation-translation-rotation� scheme for a small time window ∆t.

3.1 Motion Model

Given a pose time sequence describing the discrete trajectory of a rigid body moving in three-
dimensional space, we calculate the velocities and accelerations in all six dimensions (three for
translation and three for rotation) at a given time by regression. For this purpose, we de�ne a
small time window ∆t, during which we assume a constant translational acceleration a = v̇ and
a constant rotational acceleration α = ω̇, all in body-�xed coordinates. As the body-�xed frame
of reference is not an inertial system, the motion in the di�erent dimensions is tightly coupled.
Therefore, we will introduce a straightforward motion scheme to model the true motion of the
body. Afterwards, we calculate the coe�cients for velocity and acceleration from the motion
scheme to get appropriate correction terms for �ctitious forces.
The incremental translational motion in body-�xed coordinates (ignoring the rotation during

the translation) during ∆t is given by

∆p = v ∆t+
1

2
a ∆t2 (4)

as shown in Fig. 1.
The corresponding change in orientation during ∆t is given by

∆q =

[
1

1
2

(
ω∆t+ 1

2α∆t2
)] , (5)

which is the approximated quaternion built from the incremental rotation ω∆t+ 1
2α∆t2 around

all three axes (see Section 3.4). For half the time window ∆t/2 we get an incremental rotation
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of

∆qh =

[
1

1
2

(
1
2ω∆t+ 1

8α∆t2
)] . (6)

As long as ∆t is not in�nitesimally small, which is the case for a time window that contains a
reasonable number of data points for regression, the translational motion ignoring the rotation
∆p deviates substantially from the actual motion on an arc. According to Figure 1, we obtain
a better approximation of the incremental translational motion, by approximating the motion
on a curve as the three-step motion:

1. half rotation

2. translation

3. half rotation,

which we call the �rotation-translation-rotation� (rtr) scheme. In this scheme, the change in the
position assuming constant acceleration is[

0
∆prtr

]
= ∆qh �

[
0

∆p

]
�∆q̄h . (7)

Theorem 1. Let v and a be translational velocity and acceleration and ω the rotational velocity
during a time window ∆t. Then the incremental motion ∆prtr in rtr scheme is approximated by

∆prtr ≈ v ∆t+
1

2
(a + ω × v) ∆t2 (8)

in a second-order Taylor approximation in ∆t.

Proof. First, we write (7) as[
0

∆prtr

]
=

[
∆qh,0

∆qh,1:3

]
�
[

0
∆p

]
�
[

∆qh,0

−∆qh,1:3

]
. (9)

Then, we apply the de�nition of the quaternion multiplication and the quaternion adjoint (see
[2]) and obtain[

0
∆prtr

]
=

[
−∆qh,1:3 ·∆p

∆p + (∆qh,1:3 ×∆p)

]
�
[

∆qh,0

−∆qh,1:3

]
(10)

=

[
−∆qh,1:3 ·∆p− (∆p + (∆qh,1:3 ×∆p)) · (−∆qh,1:3)

(∆qh,1:3 ·∆p) ∆qh,1:3 + ∆p + (∆qh,1:3 ×∆p) + (∆p + (∆qh,1:3 ×∆p))×∆qh,1:3

]
(11)

=

 −∆qh,1:3 ·∆p + ∆qh,1:3 ·∆p︸ ︷︷ ︸
0

+ (∆qh,1:3 ×∆p) ·∆qh,1:3︸ ︷︷ ︸
0

(∆qh,1:3 ·∆p) ∆qh,1:3 + ∆p + 2 (∆qh,1:3 ×∆p)− (∆qh,1:3 ×∆p)×∆qh,1:3

 .

(12)

Using Grassmann's identity and the anti-commutative behavior of cross products, we can sim-
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plify (12) to[
0

∆prtr

]
=

[
0

2 (∆qh,1:3 ·∆p) ∆qh,1:3 + 2 (∆qh,1:3 ×∆p) +
(

1− |∆qh,1:3|2
)

∆p

]
. (13)

We exploit the de�nitions (4) and (6) and split ∆prtr into

∆prtr = ∆p︸︷︷︸
v∆t+ 1

2
a∆t2

+ 2 (∆qh,1:3 ×∆p)︸ ︷︷ ︸
1
2

(ω×v)∆t2+O(∆t3)

+ 2 (∆qh,1:3 ·∆p) ∆qh,1:3︸ ︷︷ ︸
O(∆t3)

− |∆qh,1:3|2 ∆p︸ ︷︷ ︸
O(∆t3)

, (14)

which is � under omission of terms O
(
∆t3

)
� equal to

∆prtr ≈ v ∆t+
1

2
(a + ω × v) ∆t2 , (15)

and equivalent to (8).

Since we describe the motion in body-�xed coordinates, the Taylor coe�cients of zeroth order
are trivially zero, whereas the coe�cients of �rst and second order are the velocities and accel-
erations (including �ctitious forces). Since this is nothing else than a superposition of equations
of motion in three dimensions, we can separate the problem by computing the coe�cients in
each dimension individually, which is described in the following section.

3.2 One-Dimensional Motion Regression

In this section, we derive our regression approach to determine the �rst and second derivative
of the one-dimensional position x(t) of a moving body, i.e., its velocity and the acceleration at
a given time. Assuming constant acceleration a = ẍ(t), the one-dimensional motion of a body
can be described by its initial position x0 and velocity v0 = ẋ(t0) at time t0 and its acceleration
a by Newton's equations of motion via

x̃(t, a, v0, x0, t0) = x0 + v0(t− t0) +
1

2
a(t− t0)2 . (16)

In the following we assume t0 = 0 without loss of generality. Given n pairs of time and position
(ti, xi) for i = 1, . . . , n, we estimate the velocity and acceleration that minimize the squared
error given by the residual

R(a, v0, x0) =

n∑
i=1

(xi − x̃ (ti, a, v0, x0))2 . (17)

This is the least-squares estimator for the parameters x0, v0, and a, and we can obtain the
minimum of the residual by solving

∂R

∂x0

!
=
∂R

∂v0

!
=
∂R

∂a

!
= 0 . (18)

Putting (16) into the residual (17) results in

R(a, v0, x0) =

n∑
i=1

(
xi −

(
1

2
at2i + v0ti + x0

))2

(19)
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and �nally using (18), we obtain the equations∑
i

xit
2
i =

∑
i

(
1

2
at4i + v0t

3
i + x0t

2
i

)
(20)

∑
i

xiti =
∑
i

(
1

2
at3i + v0t

2
i + x0ti

)
(21)

∑
i

xi = nx0 +
∑
i

(
1

2
at2i + v0ti

)
, (22)

which collectively minimize the squared error. These equations form a linear system and may
be rewritten in the matrix form∑i t

2
i

∑
i ti n∑

i t
3
i

∑
i t

2
i

∑
i ti∑

i t
4
i

∑
i t

3
i

∑
i t

2
i

1
2a
v0

x0

 =

 ∑i xi∑
i xiti∑
i xit

2
i

 . (23)

Renaming various terms according to ∑
i

tji =: stj (24)∑
i

xi =: sx (25)∑
i

xiti =: stx (26)∑
i

xit
2
i =: st2x (27)

gives st2 st n
st3 st2 st
st4 st3 st2

1
2a
v0

x0

 =

 sxstx
st2x

 (28)

⇒

1
2a
v0

x0

 =

st2 st n
st3 st2 st
st4 st3 st2

−1  sxstx
st2x

 . (29)

This is now readily solved for the acceleration a and the velocity v0 by

a = 2A−1
(
sx
(
s2
t2 − stst3

)
+ stx (nst3 − stst2) + st2x

(
s2
t − nst2

))
(30)

v0 = A−1
(
sx (stst4 − st2st3) + stx

(
s2
t2 − nst4

)
+ st2x (nst3 − stst2)

)
, (31)

where

A = n
(
s2
t3 − st2st4

)
+ st (stst4 − st2st3) + st2

(
s2
t2 − stst3

)
. (32)
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3.3 Fictitious Forces

As one can see in the above result (8) for the coe�cients of the Taylor expansion of (7), the
velocity v is directly given by the regression, whereas the translational acceleration that we get
from the regression is equivalent to a term

aregression = a + ω × v. (33)

This is a result of the Coriolis e�ect, which has an in�uence on the trajectory since the body
does not move in an inertial frame of reference. As the Coriolis acceleration is given by

aCoriolis = −2ω × v, (34)

the coe�cients of the acceleration can be expressed as

aregression = a− 1

2
aCoriolis . (35)

The reason that we only need to subtract half of the Coriolis acceleration lies in the fact that
the Coriolis e�ect has two di�erent origins, each accounting for a term −ω × v = 1

2aCoriolis. In
general, we have to deal with the Coriolis e�ect when we have a motion described in a rotating
frame of reference, e.g., the body-�xed coordinates we use here. In this case, one origin of
�ctitious force � the one that applies here � is the motion of the body in time due to the rotating
frame of reference, which depends on the angular velocity ω of the body. The second half of
the Coriolis e�ect is a result from the change of velocity of the object inside the rotating frame
of reference. This results from the di�erent absolute velocities at di�erent positions inside the
rotating system. However, since we de�ne the body-�xed coordinates as the frame of reference,
the origin of the coordinate system is always at the center of mass of the body, i.e. the body
never moves inside the rotating frame of reference. Therefore, the second term is equal to zero.
With this result, the acceleration we get from the regression can easily be separated into

the real acceleration of the body and acceleration resulting from the Coriolis e�ect (see (35)).
Rewriting this to

a = aregression +
1

2
aCoriolis (36)

= aregression − ω × v (37)

gives us the true body-�xed acceleration from the regression corrected for �ctitious forces. Since
ω and v are given directly by the regression itself, this approach is self-consistent.

3.4 Quaternions from Incremental Rotations

Theorem 2. Let ω be the rotational velocity and α the rotational acceleration during a short
time interval ∆t. Then, the incremental rotation during ∆t is approximated by the quaternion

∆q =

[
1

1
2

(
ω∆t+ 1

2α∆t2
)] , (38)

assuming constant angular acceleration.
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Proof. The quaternion rate from the rotational velocity

q̇ =
1

2
q�

[
0
ω

]
, (39)

and the quaternion acceleration

q̈ =
1

2
q�

[
0
α

]
(40)

are given by Diebel [2]. Using this notation, the new orientation after ∆t can be written using
the incremental orientation ∆q during ∆t as

q�∆q = q + q̇ ∆t+
1

2
q̈ ∆t2 (41)

= q +
1

2
q�

[
0
ω

]
∆t+

1

4
q�

[
0
α

]
∆t2 . (42)

The incremental rotation can then be written as

∆q = q̄� q�∆q (43)

assuming q is a unit quaternion and q̄ denotes its conjugate. Using (42) this can �nally be
simpli�ed to

∆q = q̄� q + q̄� 1

2
q

[
0
ω

]
∆t+ q̄� 1

4
q�

[
0
α

]
∆t2 (44)

=

[
1
0

]
+

1

2

[
0
ω

]
∆t+

1

4

[
0
α

]
∆t2 (45)

=

[
1

1
2ω∆t+ 1

4α∆t2

]
, (46)

which is equivalent to (38).
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4 Experimental Validation

4.1 Simulated data

To test our method, we generated a bulk of trajectory data by a physical simulation of a blimp
�ying in three-dimensional space. The data has been generated by integration of Newton's
equations of motion over time with randomly chosen controls of the blimp. The output of the
simulation includes trajectories, velocities and accelerations in all six dimensions with appro-
priate timestamps. Thereafter, we put the trajectory data with timestamps into the regression
and compared the resulting velocities and accelerations with the ones given by the simulation.
We present an excerpt of the plots, showing the comparisons for three-dimensional translational
velocity and acceleration (see Figure 2), as well as three-dimensional rotational velocity and
acceleration (see Figure 3), all with respect to the body-�xed frame of reference.

4.2 Experimental data

After the promising tests in simulation, we additionally produced a trajectory of test data
by mounting an Xsens MTi IMU onto an object equipped with motion capture markers. While
capturing the pose time sequence with the motion capture system, we held the object in one hand,
walking through the room and exposed it to quite large accelerations in di�erent dimensions with
abrupt changes in direction. In this setting, the time window for the regression was set to 0.1 s
with a temporal resolution of the motion capture system of 300Hz.
One has to keep in mind that the algorithm above directly delivers mechanized data from a

given pose time sequence. An IMU, however, �feels� the real velocities and accelerations, i.e., all
�ctitious and real forces a�ecting the system.
We therefore have to add all forces a�ecting the IMU to the resulting data from the regression

given by

areg,IMU = areg + ω × v︸ ︷︷ ︸
Coriolis

+α× pI︸ ︷︷ ︸
rot. acc.

+ω × (ω × pI)︸ ︷︷ ︸
centrifugal

+ g̃ (q)︸ ︷︷ ︸
gravity

(47)

for being able to compare the acceleration measured by the accelerometer of the IMU to the
acceleration calculated from regression. Here, pI is the position of the IMU relative to the frame
of reference of the object and g̃ (q) is the orthogonal projection of the gravity of Earth [0, 0, g]T

into the body-�xed frame of reference given by

[
0

g̃ (q)

]
= q̄�


0
0
0
g

� q . (48)

Since the orientation of the IMU was the same as the orientation of the object, no correction
term was needed to correct for this. However, if � in another setting � the orientation of the IMU
were di�erent, translational and rotational acceleration would additionally have to be rotated
by the inverse relative orientation of the IMU with respect to the body-�xed frame of reference.
Figure 4 shows the translational acceleration areg,IMU of our regression approach compared to

the acceleration measured by the accelerometer integrated into the IMU, and Figure 5 shows
the rotational velocity of our regression approach compared to the rotational velocity measured
by the gyroscopes of the IMU.
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Figure 2: The translational velocities (top) and accelerations (bottom) of simulated data and
the results of our regression approach on the pose time sequence generated during the
simulation.
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Figure 3: The rotational velocities (top) and accelerations (bottom) of simulated data and the
results of our regression approach on the pose time sequence generated during the
simulation.
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Figure 4: The translational accelerations measured by the accelerometers of an IMU compared
to regression from motion capture data.
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Figure 5: The rotational velocities measured by the gyroscopes of an IMU compared to regression
from motion capture data.
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5 Conclusions

We presented a regression-based approach to calculate the velocity and acceleration of a rigid
body moving in three-dimensional space from a given pose time sequence. Our approach is
especially useful for optical motion capture systems, which usually provide accurate pose esti-
mates at high frequency for rigid bodies equipped with retrore�ective markers. The experimental
validation shows that our regression provides accurate velocities and accelerations taking into
account �ctitious forces in the moving body-�xed frame of reference.
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