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Abstract

In this paper, we study the leader election problem in the context of a congested single-hop radio
network. We assume a collection of N synchronous devices with access to a shared band of the ra-
dio spectrum, divided into F frequencies. To model unpredictable congestion, we assume an abstract
interference adversary that can choose up to t < F frequencies in each round to disrupt, preventing com-
munication. The devices are individually activated in arbitrary rounds by an adversary. On activation, a
device does not know how many other devices (if any) are also active. The goal of the leader election
problem is for each active device to output the id of a leader as soon as possible after activation, while
preserving the safety constraint that all devices output the same leader, with high probability.

We begin by establishing a lower bound of Ω
(

log2 N
(F−t) log logN + Ft

F−t ·logN
)

rounds, through reduction
to an existing result in this model [6]. We then set out to prove this bound tight (within log logN factors).
For the case where t = 0, we present a novel randomized algorithm, based on a strategy of recruiting
herald nodes, that works in O

(
log2 N
F + logN

)
time. For 1 ≤ t ≤ F/6, we present a variant of our

herald algorithm in which multiple real (potentially disrupted) frequencies are used to simulate each
non-disrupted frequency from the t = 0 case. This algorithm works in O

(
log2 N
F + t logN

)
time.

Finally, for t > F/6 we show how to improve the trapdoor protocol of [6], used to solve a similar
problem in a non-optimal manner, to solve leader election in optimal O

(
logN+Ft
F−t · logN

)
time, for

(only) these large values of t. We also observe that if F = ω(1), t = o(logN) and t ≤ (1 − ε)F
for a constant ε > 0, our protocols beat the classic Ω(log2N) bound on wake-up in a single frequency
radio network, underscoring the observation that more frequencies in a radio network allows for more
algorithmic efficiency—even if devices can each only participate on a single frequency at a time, and a
significant fraction of these frequencies are disrupted adversarially.



1 Introduction & Related Work

Due to the growing number of wireless devices, the systems community has placed new emphasis on de-
veloping shared spectrum networks [19]. Such networks allow multiple unrelated protocols to share the
same band of the radio spectrum, each dynamically adjusting its use based on the local behavior it observes.
Many of the most widely-deployed wireless standards—including WiFi [1], Bluetooth [4], and Zigbee [2]—
operate in shared spectrum networks, and with the recent opening of broadcast television bands for secondary
use by networked devices, more such standards are sure to follow [3]. Shared spectrum networks, however,
introduce new algorithmic challenges. A protocol operating in this environment encounters a communica-
tion medium that is being used concurrently in a dynamic and unpredictable fashion. Even tasks as basic as
finding other nearby devices become complex in this unpredictable setting [22].

In this paper, we study the foundational problem of leader election in the shared spectrum setting.
We argue that discovering nearby devices and then electing a leader to coordinate their behavior (e.g., by
disseminating a frequency hopping pattern or spread spectrum code [20]) is a key building block in the con-
struction of efficient protocols in these complex networks. In addition, techniques to solve leader election in
single-hop radio networks have also proved useful for solving more basic problems like computing maximal
independent sets for clustering or colorings to coordinate channel access in a multi-hop setting [16, 18].
Formally, we capture the dynamics of shared spectrum communication using the well-studied t-disrupted
radio network model [5–9, 12, 17, 20, 21]. We present the first known optimal solution to leader election
in this setting (within log log factors). As detailed below, this optimal solution also beats a classic lower
bound on communication in a non-shared, single-frequency radio network—providing further evidence of
the surprising computational power of multiple frequency network models (see also [9]).

Leader Election Results. We study leader election in the t-disrupted network model, which describes a
congested single-hop synchronous radio network consisting of F > 0 communication frequencies. In each
round, each active device can choose a single frequency on which to participate. Concurrent broadcasts
on the same frequency lead to message loss on that frequency, due to collision. We assume no collision
detection. To capture the unpredictable interference caused by unrelated protocols using the same shared
spectrum, we introduce an abstract interference adversary that can choose up to t < F frequencies in each
round to disrupt—preventing communication. We assume t is a known upper bound. The leader election
problem assumes N devices that are activated in an arbitrary pattern by an adversary. On being activated,
a device has no a priori knowledge of which other devices (if any) are also active. Some devices might
never be activated. The goal is to output the id of a leader as soon as possible, while maintaining the safety
property that all active devices output the same id, with high probability. The time complexity of a leader
election algorithm is measured as the maximum number of rounds from when a device is activated to when
it outputs a leader id.

We start by establishing a lower bound of Ω
( log2N

(F−t) log logN + Ft
F−t · logN

)
rounds, through reduction to

our previous bound on the wireless synchronization problem in this same model [6]. Notice, the trapdoor
protocol presented in [6] can be adapted to solve leader election inO

( F
F−t log2N+ Ft

F−t logN
)

time, which
is not tight with respect to this lower bound. In the remainder of the paper, we set out to close this gap.

To accomplish this goal, we present three different algorithms, each optimal with respect to a different
subset of the range of possible t values. For the case where t = 0, we present a randomized algorithm that
works inO

( log2N
F +logN

)
time. This algorithm uses a novel strategy of recruiting herald nodes to advance

a leadership case on behalf of a potential leader. To understand the intuition behind this strategy, imagine that
F = logN . Our algorithm, in this case, assigns an exponential distribution of probabilities to the channels,
and active devices choose their channels according to this distribution; they then broadcast on the selected
channel with constant probability. At a high-level, we can show that with constant probability, there will be
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a favored channel in this round that has only a single broadcaster. The receivers on this favored channel are
then responsible for heralding this single broadcaster by announcing it on a special announcement channel,
also with constant probability. We can prove that O(logN) rounds will be sufficient to ensure that with high
probability, a single such announcement is promulgated to the whole active network, and subsequently to all
devices that are eventually activated.

For 1 < t ≤ F/6, we present a variant of our herald algorithm in which multiple real (potentially
disrupted) frequencies are used to simulate each undisrupted frequency from the t = 0 case. This algorithm
still works in O

( log2N
F + t logN

)
time, despite the extra channels needed for simulation. Finally, for

t > F/6 we improve the trapdoor protocol of [6] to work in O
( logN+Ft
F−t · logN

)
time for these values

of t. This improvement matches the lower bound (within log log factors). It is important to note that it
requires t to be large. That is, for smaller t, this particular algorithm is no longer optimal—whereas our
above herald-style algorithms are.

The most relevant existing result is the trapdoor protocol [6] mentioned above. This protocol can be
adapted to solve the leader election problem in our model. As the time complexity is not tight with the
lower bound, our protocols close this gap. In fact, the original problem solved by the trapdoor protocol is
“wireless synchronization,” and our protocols can be adapted to solve this problem as well. Thus, not only
do we present the first known tight leader election bounds in this model, we also present the first known tight
wireless synchronization bounds. Also relevant is the work of Meier et al. [15], which studies bounds on
device discovery in the t-disrupted model. They focus primarily on the case where there are only 2 devices
that start simultaneously, but t is unknown—showing unknown t algorithms that can come within a log2F
competitive ratio of the optimal known t algorithms, in terms of expected performance. We focus instead on
a case where there are an unknown number of nodes started adversarially, but t is known.

The Computational Power of Frequency Diversity. Notice, for t = 0 andF = ω(1), our herald protocol
beats the classic Ω(log2 n) bound on a single device broadcasting alone in a single frequency, non-disrupted
radio model [11,14] (i.e., our model withF = 1 and t = 0). Indeed, our algorithms show that this advantage
can be maintained even for relatively large amounts of disruption (i.e., for t ≤ (1− ε)F , t = o(logN) and
F = ω(1)). Put another way, the presence of multiple communication frequencies adds non-trivial power to
a radio network model, even if devices can each only use one frequency per round and a significant fraction
of frequencies are disrupted. (A similar result was presented in [9], which proved that global broadcast can
be solved faster in the t-disrupted radio network model than in the classical undisrupted, single-frequency
model.)

2 Model & Definitions

We model randomized distributed algorithms in a synchronous single hop radio networking consisting of
multiple communication channels and bounded disruption. In more detail, we assume time is divided into
synchronized slots, called rounds. We assume that N devices—which we call nodes—begin each execution
inactive. At the beginning of each round, an adversary decides which devices (if any) to make active, at
which point they start executing with a round number of 1 (that is, we assume no a priori knowledge of a
global round number). The radio network consists of F ≥ 1 disjoint and distinguishable narrowband com-
munication frequencies — throughout the paper we use the notion of frequency and channel interchangeably.

In each round, each active node can choose a single frequency on which to participate by either broad-
casting or receiving. If a single node broadcasts on a given frequency in a given round, then all nodes
receiving on that frequency receive its message. If two or more nodes broadcast on the same frequency in
the same round, then the message is lost due to collision. Nodes are incapable of collision detection, i.e.,
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nodes can not distinguish between a collision and no message being broadcasted. We emphasize that nodes
learn nothing about the behavior on other frequencies.

The multi-frequency open spectrum networks we model here are prone to disruption generated by unre-
lated protocols and other source of electromagnetic emission. We capture this unpredictable disruption with
an interference adversary that can disrupt up to F frequencies per round. By disrupting a frequency, the
adversary prevents any node from receiving a message on that frequency. That is, a node receives a message
on a frequency only if a single node broadcasts on that frequency and it is not disrupted. We assume the
interference adversary knows the algorithm being executed by the nodes, and the entire history prior to the
current round, but does not know the private randomness used by nodes to make random choices.

Each node knows the F frequencies, an upper bound to the number of nodes, N , and an upper bound t
to the number of disrupted frequencies.

2.1 Mathematical Preliminaries

We frequently need to say that an event A happens with probability close to 1. If the probability that A does
not occur is exponentially small in some parameter k, i.e., if P(A) = 1 − e−ck for some constant c > 0,
we say that A happens with very high probability w.r.t. k, abbreviated as w.v.h.p.(k). We say that an event
happens with high probability w.r.t. a parameter k, abbreviated as w.h.p.(k), if it happens with probability
1 − k−c, where the constant c > 0 can be chosen arbitrarily (possibly at the cost of adapting some other
involved constants). If an event happens w.h.p.(N ), we just say it happens with high probability (w.h.p.).

In order to show concentration of random variables, we will make use of the notion of negative associa-
tion as defined in [13]. For completeness, we added the definition, as well as some basic cases in Appendix
A. In particular, consider an experiment in which weighted balls are thrown independently into n bins ac-
cording to some given distribution. For i ∈ [n], letXi be the total weight of balls in bin i and for an arbitrary
parameter a ≥ 0 and i ∈ [n], let Yi and Zi be indicator random variables such that Yi = 1 iff Xi ≤ a and
Zi = 1 iff Xi ≥ a. It can be shown that the following lemma holds (see e.g., [10, 13]):

Lemma 2.1. The random variables X1, . . . , Xn (or any subset of these random variables) are negatively
associated. The same is true for the random variables Y1, . . . , Yn and for the random variables Z1, . . . , Zn.

Specifically, negative association is useful because as, e.g., shown in [10], for the sum of negatively
associated random variables, the usual Chernoff bounds hold. We will make use of the following bounds:

Lemma 2.2. For a parameter a > 0, let X1, . . . , Xn be independent or negatively associated non-negative
random variables with Xi ≤ a. Further, let X := X1 + · · ·+Xn and µ := E[X]. For δ > 0, it holds that

P (X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ/a
.

For δ ≤ 1, the bound can by upper bounded by P(X ≥ (1 + δ)µ) ≤ e−δ
2µ/3a, for δ > 1, it holds that

P(X ≥ (1 + δ)µ) ≤ e−δ ln(1+δ)µ/2a. Further, for every δ ∈ (0, 1),

P (X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)1−δ

)µ/a
≤ e−

δ2

2a
·µ.

Lemma 2.3. Assume there are k bins and n balls with non-negative weights w1, . . . , wn ≤ 1/4, as well as
a parameter q ∈ (0, 1]. Assume that

∑n
i=1wi = c · k/q for some constant c ≥ 1. Each ball is independently

selected with probability q and each selected ball is thrown into a uniformly random bin. With probability
w.v.h.p.(k), there are at least k/4 bins in which the total weight of all balls is between c/3 and 2c.
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Proof. For i ∈ [k], let Xi be the random variable that counts the total weight of balls in bin i. Since each
ball is thrown into bin i with probability q/k, we have E[Xi] = c. We define Bernoulli random variables
Y1, . . . , Yk and Z1, . . . , Zk, where for all i ∈ [k], Yi = 1 iff Xi ≥ c/3 and Zi = 1 iff Xi ≤ 2c. Using the
bound from Lemma 2.2, we can bound the probabilities that Yi = 1 and Zi = 1 as follows:

P(Yi = 1) = 1− P
(
Xi <

c

3

)
≥ 1−

(
e−2/3

(1/3)1/3

)4c

≥ 1−
(

3

e2

)4/3

>
2

3
, (1)

P(Zi = 1) = 1− P(Xi > 2c) ≥ 1−
(
e1

22

)4c

≥ 1− e4

28
>

3

4
. (2)

The random variables Yi and Zi are not independent, however, as stated in Lemma 2.1, Y1, . . . , Yn, as well
as Z1, . . . , Zn are negatively associated. Let Y =

∑k
i=1 Yi be the number of bins with balls of total weight

at least c/3 and let Z =
∑k

i=1 Zi be the number of bins with balls of total weight at most 2c. Because
E[Y ] = k · P(Yi = 1) > 2k/3 = 8k/12 and E[Z] = k · P(Zi = 1) > 3k/4 = 9k/12, by applying Lemma
2.2, we therefore get that Y ≥ 7k/12 and Z ≥ 8k/12 with probability w.v.h.p.(k). Therefore, there is at
least 3k/12 = k/4 bins in which the total ball weight is between c/3 and 2c.

In addition, we need a few simple results in our analysis, which we sum up in the following proposition:

Proposition 2.4. 1. x ∈
[
0, 1

2

)
⇒ e−

3
2
x ≤ 1− x ≤ e−x

2. Let n, k ∈ N, λi ∈ [0, 1
k ] for i = 1, 2, . . . , n and

∑n
i=1 λi = 1. Then

∑n
i=1 λ

2 ≤ 1
k .

3 Problem

The goal of the leader election problem is for active nodes to agree on a single active node to play the role
of the leader. Formally, we say an algorithm solves the leader election problem within f(F , t, N) rounds if
it guarantees the following properties are satisfied w.h.p.(N ), when executed in a network with parameters
F ,t,N :

1. Liveness: Every node that is activated outputs the id of an active node as leader within f(F , t, N)
rounds of being activated.

2. Well-Formedness: Every node that is activated performs no more than a single output.

3. Safety: No two nodes output different leaders.

We call an algorithm that solves the leader election problem a leader election algorithm.

4 Lower Bound

We establish a lower bound on leader election that we will subsequently prove to be tight (within log log fac-
tors) in the remainder of this paper. This bound, presented below, requires that the leader election algorithm
in question is also regular [6]. An algorithm is regular if there exists a sequence of pairs (F1, b1), (F2, b2), ...,
where each Fi is a probability distribution over frequencies and bi is a probability, such that for each node
u and local round r, as u has not received a message through its first r rounds, it chooses its frequency and
whether or not to broadcast according to Fr and br, respectively. Once u receives a message we no longer
restrict its behavior. Notice, all the algorithms described in this paper are regular.

We continue with the main bound:

Theorem 4.1. LetA be a regular algorithm that solves the leader election problem in f(F , t, N) rounds. It
follows that f(F , t, N) = Ω

(
log2 (N)

(F−t) log log (N) + Ft
F−t · logN

)
.
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To prove this theorem, our strategy is to first prove that any leader election algorithm must satisfy a
specific communication property. We then leverage a lemma that was adapted from our study of a related
problem [6], to bound such algorithms, yielding the result claimed by our theorem.

In more detail, the lemma we adapt from [6] bounds a type of algorithm that we call vocal. Formally,
we say an algorithm is vocal with probability p, if for every activation pattern1 that includes at least 2 nodes,
with probability at least p some node receives a message from another. In the setting of non-disrupted single
frequency radio networks (i.e., our model with F = 1 and t = 0), Jurdzinski and Stachowiak [14] proved
a classic bound of Ω

(
log2 (N)

log log (N)

)
rounds for a vocal algorithm to deliver its first message (a problem they

called wake-up). In fact, the lemma we adapt from [6], relies, in part, on a generalization of the Jurdzinski
and Stachowiak argument to a setting with multiple frequencies and disruption. Notice that Farach-Colton
et al. [11] later removed the log log (N) factor, but the same techniques we used to generalize [14] did not
apply.

It is tempting to claim it is obvious that any solution to leader election must be vocal, and therefore any
bound on vocal algorithms applies to leader election. And in fact there are studies of other radio network
problems that make this exact claim without justification. Here we emphasize that more care is needed.
Though our intuition might tell us that some communication is required for meaningful coordination, this
is not necessarily always the case. Indeed, for any number of advanced radio network problems, one can
devise algorithms that, for some activation pattens, solve the problem with no messages ever being received.
Silence, in other words, can convey information. Accordingly, our first task is to formally argue that to solve
leader election with high probability requires that the algorithm is vocal with an almost as high probability:

Lemma 4.2. If algorithm A solves the leader election problem with probability at least 1 − ε, then with
probability at least 1 − 3ε, A is vocal, and at least one node waits to output a leader until after the first
message is received.

Proof. Assume for contradiction that A is vocal in the required manner with probability less than 1 − 3ε.
It follows that there exists an activation pattern P that activates at least 2 nodes, such that with probability
at least 3ε, A with pattern P generates a silent execution in which every node elects a leader before any
node receives a message. Let u and v be two nodes activated in P . Our strategy is to argue that u and v
cannot distinguish a silent execution with pattern P from executions where they are alone. This will lead to
a non-trivial probability that at least one of these nodes fails to solve leader election.

To formalize this intuition we need to formalize our treatment of randomness. In more detail, assume
that at the beginning of each execution, a sufficiently large collection of bits is generated for the system,
where each bit is determined with independent randomness. These bits are then partitioned among all N
processes, and processes that end up activated use their bits to resolve their probabilistic choices. Let B be
the set of all possible bit strings that could be generated for an execution. By definition, every s ∈ B is
equally likely to be generated.

Let BS ⊂ B be the subset of strings that, when combined with activation pattern P , generate a silent
execution. By our above assumption, |BS | > 3ε|B|. Let BL

S ⊆ BS be the subset of strings from BS that,
when combined with activation pattern P , are not only silent but also solve leader election (that is, all nodes
output the same node as leader, and it is an active node). Given our assumption about A solving leader
election with probability 1− ε, it follows:

|BL
S | > 2ε|B|.

Let SP be the set of nodes activated in P . Define ` : BL
S → SP , such that ∀s ∈ BL

S , `(s) is the single
node in SP to be the elected leader when we run A with s and activation pattern P . A simple counting
argument tells us:

1By activation pattern, we mean the description of which nodes are activated in an execution and during which global round.
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∃u ∈ SP ,
|{s ∈ BL

S : `(s) = u}|
|BL

S |
≤ 1/2.

That is, at least one node is not elected leader in more than half of these bit strings.
Moving on, letBL,ū

S ⊆ BL
S be the strings inBL

S where u is not elected leader. The key observation is that
for any s ∈ BL,ū

S , an execution ofAwith swith an activation pattern that only activates u is indistinguishable
through u’s leader output w.r.t. an execution with u in pattern P , as in both cases, u makes the same random
choices and receives no messages, before outputting a leader. For these strings, when u is run alone, it elects
some other node as leader, which violates the properties of leader election. To complete the proof, we note
that by construction:

|BL,ū
S | ≥ (1/2)|BL

S | > ε.

We have, therefore, identified an activation pattern (u being activated alone) for which A solves leader
election with probability less than 1− ε. A contradiction.

We can now present our main lemma regarding vocal algorithms. This lemma is adapted from the proof
arguments presented for Theorems 1 and 4 from [6].

Lemma 4.3 (from [6]). LetA be a regular vocal algorithm that guarantees that a message is received within
f(F , t, N) rounds of the first activation, with probability at least 1 − 1/N . It follows that f(F , t, N) =

Ω
(

log2 (N)
(F−t) log log (N) + Ft

F−t · logN
)

.

Returning to Theorem 4.1, the proof follows from the combination of Lemmas 4.2 and 4.3.

5 Basic Herald Algorithm

We start our description of algorithms with the simplest case, when there are no disrupted frequencies, i.e.,
t = 0. This allows us to present the basic ideas and techniques without having to worry about many of the
technical difficulties that arise in the more general setting.

The described protocol runs in O
( log2N
F + logN

)
, which is tight (up to log log factors).

Algorithm Description. For convenience, we define F := F − 2 and assume that the F frequencies are
1, . . . , F , as well as two special frequencies H and L. W.l.o.g., we assume that F ≤ logN , otherwise, we
just only use the first 2 + logN channels. We also assume for simplicity that N is a power of 2 and that F
divides logN . W.l.o.g., we assume the first round in which any node wakes up to be round 1.

After awaking, a node u considers itself waiting (state W ). It stays in this state for Θ(logN) rounds (we
call that Phase 0) in which it only listens on channels L and H (with prob. 1/2 on each of them). If u does
not receive any message during Phase 0, it switches to the state competing (C), where it behaves as follows.

The algorithm acts in phases. Each phase lasts for l := c logN rounds, where c is an appropriately
chosen constant. There are a total of 2 logN

F +1 phases. If a node finishes its last phase while still competing,
then it declares itself a leader (state L) and starts broadcasting on channelLwith probability 1

2 in each round.
In a given round, a competing node chooses one of the available channels—each of them with a different

probability. The highest probability is assigned to channels H and L, which have a special role among all
channels. If a competing node u chooses channels L orH then it listens in that round, if it chooses a channel
i ∈ [F ], u listens with constant probability π` ≤ 1

2 and transmits with probability 1− π` (the value of π` is
determined at the end of the proof of Lemma 5.2). Once awake (i.e., active), each node u keeps track of its
age age(u) by counting the number of rounds it has been awake.

Most of the time a node spends listening; if it ever hears a message, then it follows these rules:
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Algorithm 1: Basic herald algorithm for the undisrupted case

State description: W – waiting, C – competing, H – herald, L – leader, E – eliminated
1 begin
2 set phase := 0; count := 0; age := 0; state := W
3 while state6= E do
4 count := count + 1; age := age + 1
5 if count = c logN + 1 then
6 count := 1; phase := phase + 1

7 if phase = 1 and state = W then state := C

8 if phase = 2 logN
F + 2 and state = C then state := L

9

10 switch state do
11 case W : With prob. 1/2, listen on channelH, otherwise listen on channel L
12 case C :
13 Randomly pick r ∈ [0, 1)

14 Let I := max
{
i : r ≥ (2i−F · 2(F/2)(phase−1))/(4N)

}
15 if I > F or I = 0 then
16 With prob. 1/2, listen on channelH, otherwise listen on channel L
17 else
18 On channel I with probability π` listen or otherwise broadcast (id, age)

19 case H :
20 Broadcast bc on channelH
21 if bc 6= (id, age) then state := E else state := C

22 case L : Broadcast (id, age) on channel L with prob. 1/2, otherwise listen on channel L

23 Upon receiving a message msg = (msg.id,msg.age):
24 if current channel isH or L then
25 if msg.age ≥ age and msg.id 6= id then state := E
26 else // can only happen if state = C
27 state := H
28 if msg.age ≥ age then
29 bc := (msg.age + 1,msg.id)
30 else
31 bc := (age + 1, id)

1. First assume that a node u hears a message on channelH orL. The message contains the name and age
of a node v. Note that v is not necessarily the sender of that message. If u 6= v and age(v) ≥ age(u),
then u immediately considers itself eliminated (state E). Eliminated nodes only listen on channel L
to learn of a leader election. If u is older than v then u does not react to the message.

2. If a node u hears a message containing the name and age of a node v on a channel other than H or
L, then u considers itself a herald (state H) for exactly one round (i.e., for the following round). In
that round, u broadcasts a message on channel H. If the herald u is strictly older than the age of v
in the message it received, then u broadcasts its own name and (current) age on channel H. If not,

7



then it broadcasts the name and age of v instead (adding 1 round to comprise the fact that there is a
one-round-delay). A node u that heralds the name of a node v 6= u also considers itself eliminated.

A competing node in the first phase chooses one of the F channels using the following probabilities:
It selects channel i ∈ [F ] with probability 2i−F

4N and with half of the remaining probability for channels H
and L, respectively. Each time a node progresses to a new phase all those probabilities (except of those for
channels H and L) are multiplied by 2

F
2 . Channels H and L always get the remaining probability. After

2 logN
F + 1 phases, the chances for channels F, F − 1, F − 2, . . . are 1

4 ,
1
8 ,

1
16 , . . ., respectively. Channel H

and L are therefore both always chosen with probability more than 1
4 .

Analysis. The goal of the remainder of Section 5 is to prove the main theorem of the section.

Theorem 5.1. With high probability, Algorithm 1 elects exactly one leader and it does so in O
(

log2N
F

)
rounds after the first node wakes up.

In any round, for a competing node v we denote with pv(m) the probability of v choosing channel m
and we denote by Pm the sum of the probabilities of all nodes to choose channel m, i.e., Pm :=

∑
v pv(m).

Note that PF = 2mPF−m and therefore PF ≈ 1
2

∑F
m=1 Pm. When making a statement about the probability

mass, we refer to PF . If we state that a constant fraction of the probability mass is eliminated we mean that
a collection of notes, which contribute a constant fraction to the probability mass, are eliminated. Further, in
any round, A is the age which separates younger and older nodes in such a way that both groups contribute
roughly one half of the whole probability mass. In more precise mathematical terms:

A := min

{
h ∈ N0 :

∑
v:age(v)≤h

pv(F ) >
PF
2

}
= max

{
h ∈ N0 :

∑
v:age(v)≥h

pv(F ) ≥ PF
2

}
.

A herald is called old, if it broadcasts on channelH the id of an old node u, where u is old if age(u) ≥ A.
We call a round in which exactly one node u becomes an old herald a successful round. We next show
that under the appropriate circumstances, each round is successful with constant probability. In the round
following a successful round, all nodes listening on channel H receive the old herald’s message. Since the
herald’s message contains the fingerprint of an old node and each other node listens on channel H at least
with probability 1

4 , we are able to show that in expectation at least a constant fraction of the probability mass
is eliminated when this happens.

Lemma 5.2. A round r during an execution of Algorithm 1 for which PF ∈
[

1
2 , 2

F−1
]

is a successful round
with constant probability.

Proof. The conditions of the lemma imply that for one channel λ ∈ {1, . . . , F} it holds that Pλ is in [1
2 , 1).

We will prove two claims:
W.l.o.g., assume that of all nodes V = {v1, . . . , vn} the nodes v1, . . . vκ are those being awake and that

age(v1) ≥ · · · ≥ age(vκ). Let i0 be the smallest value such that age(vi0) < A, i.e., v1, . . . , vi0−1 are old and
vi0 , . . . , vκ are not. Further, let cij be the probability that on channel λ exactly nodes vi and vj are present
in the current round, but no other node. We denote by pl(m) the probability that node vl is on channel m.
We have

cij = pi(λ)pj(λ)
∏
k 6=i,j

(1− pk(λ)) ≥ pi(λ)pj(λ)
∏
k

(1− pk(λ))

(Prop. 2.4.1)

≥ pi(λ)pj(λ)e−
3
2
Pλ =: c′ij .
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So the probability of having exactly two nodes on channel λ is lower bounded by the sum over all c′ij
with i < j. Since c′ij = c′ji for all i, j, we can sum over all c′ij (without restrictions in i and j), which is

P 2
λe
− 3

2
Pλ , deduct

∑
i c
′
ii and multiply the result with 1

2 . However, we need also to make sure that at least
one of the nodes vi, vj is old, so we also refrain from including any c′ij for which both i, j ≥ i0, i 6= j. Call
the event of having exactly two nodes on channel λ with at least one of them being old Dλ. Then,

P(Dλ) ≥ 1

2

( ∑
i,j

c′ij︸ ︷︷ ︸
=P 2

λe
− 3

2Pλ

−
∑
i<i0

c′ii −
(∑
i≥i0

c′ii +
∑

i,j≥i0,i 6=j
c′ij

)
︸ ︷︷ ︸

=:C′0

)
.

Set δi := pi(λ)
Pλ

for i < i0 (i.e., all old nodes) and δi0 :=

∑
j≥i0

pj(λ)

Pλ
(all young nodes together). Note that

the δi’s are not defined for i ∈ {i0 + 1, . . . , n}, however, they still ’consider’ the probabilities of all nodes.
Now we have that δi ≤ 1

2 for all i (including i0) and our choice of δi0 also ensures that
∑i0

i=1 δi = 1, which
allows us to apply Proposition 2.4.2. Furthermore it holds that c′ii = δ2

i P
2
λe
− 3

2
Pλ and C ′0 = δ2

i0
P 2
λe
− 3

2
Pλ .

We get

P(Dλ) ≥ 1

2
P 2
λe
− 3

2
Pλ

(
1−

∑
i<i0

δ2
i − δ2

i0

)
≥ 1

4
P 2
λe
− 3

2
Pλ = Ω(1)

We call a transmission on a channel m ∈ [F ] successful, if exactly one node transmits on that channel,
exactly one node listens and at least one of those nodes is old—we denote that event by Am. The probability
of having a successful transmission on some channel m conditioned on having exactly two nodes on that
channel is 2π`(1− π`) ≥ π`. Since we also know that P(Dλ) = Ω(1), we have

P(Aλ) = Ω(π`).

That finishes the proof of our first claim. We continue with proving the second one.
To have a successful round, we have to have exactly one old herald being created in that round. This

probability is lower bounded by the probability that this herald is created on channel λ while none is created
on any other channel. Let Bm be the event that exactly one node transmits and at least one node listens on
channel m:

P(successful round) ≥ P(Aλ)

(
1− P

( ⋃
m∈[F ]\λ

Bm

∣∣∣∣Aλ)) ≥ P(Aλ)

(
1−

∑
m∈[F ]\λ

P(Bm|Aλ)

)
.

When we condition on Aλ, there are κ− 2 nodes that are on channels different from λ. Let u1, . . . , uκ−2 ⊂
{v1, . . . , vκ} be these nodes. Let i, j, k be in {1, . . . κ − 2} in the following calculations. Conditioning on
Aλ the probability for any node uk being on channel m increases by (1− pk(λ))−1. That is,

P(uk is on channel m|Aλ) =
pk(m)

1− pk(λ)
,

and moreover we have

P(uk is not transmitting on channel m|Aλ) = 1− (1− π`)pk(m)

1− pk(λ)
.

Let Bi,j
m be the event that ui is on channel m, no other node transmits on channel m, and uj listens on

9



channel m. For m ∈ [F ] \ λ, we have

P
(
Bi,j
m |Aλ

)
=

pi(m)

1− pi(λ)
(1− π`)

pj(m)

1− pj(λ)
π`

∏
k/∈{i,j,κ−1,κ}

(
1− (1− π`)pk(m)

1− pk(λ)

)

= pi(m)pj(m)π`

≤1︷ ︸︸ ︷
(1− π`)(1− pκ−1(λ))(1− pκ(λ))∏

k≤κ

1− pk(λ)− (1− π`)pk(m)

1− pk(λ)

∏
k=i,j,κ−1,κ

(1− pk(λ)− (1− π`)pk(m)︸ ︷︷ ︸
≤ 1

4
+ 1

8

)−1

(Prop. 2.4.1)

≤ pi(m)pj(m)π` e
3
2
Pλ e−Pλ−Pm(1−π`)(8/5)4

≤ pi(m)pj(m)π` e
3e−

Pm
2 .

Because Bm =
⋃
i,j∈[κ−2], i 6=j B

i,j
m , applying a union bound yields

P(Bm|Aλ) ≤
∑

i,j∈[κ−2], i 6=j

P(Bi,j
m |Aλ) ≤ P 2

me
3π`e

−Pm
2 =: Cm.

For a fixed m this value is O(π`).
We now upper bound the sum over all Cm. We set λ′ := min{λ + 4, F}. Remember that Pm+1 =

2Pm ∀m ∈ {1, . . . , F − 1}.

Cm+1

Cm
= 4e−Pm+Pm

2 = 4e−
Pm
2 <

1

2
, ∀m ≥ λ′

and also
Cm−1

Cm
=

1

4
e−

Pm
4

+Pm
2 =

1

4
e
Pm
4 <

1

2
, ∀m ≤ λ

That is, the further a frequency is away from λ, the smaller the probability that there is a herald created, more
precisely, after some constant distance from channel λ, probabilities drop by at least 1

2 with each step within
the frequencies (actually way more). We thus make use of geometric series to upper bound all frequencies
outside [λ, . . . , λ′] simultaneously by Cλ + Cλ′ . As mentioned above Cm = O(π`) for a fixed m. Thus, in
total, we have ∑

m6=λ
P(Bm|Aλ) ≤

∑
m

Cm ≤ Cλ + Cλ′ +

λ′∑
m=λ

Cm = O(π`).

Choosing π` small enough but still constant, then this value is less than 1. On the other hand, since
we choose π` to be a constant the event Aλ happens with constant probability and thus the probability of a
successful round is also a constant, concluding the proof.

Because in every round with constant probability an old herald is created, we can argue that in expecta-
tion all listening nodes on channelH of the same or lower age as the age being heralded are eliminated. By
the definition ofA we have that every time a successful round happens, a constant fraction of the probability
mass is eliminated with constant probability.

Lemma 5.3. With high probability, at all times, it holds that PF ≤ 2F−1. Further, with high probability,
there are no l/2 consecutive rounds in which PF ≥ 1

2 .
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Proof. There are two ways for PF to increase: Either a node is already actively contributing to PF and
finishes a phase or it switches from the waiting state to the competing state. The former allows an increase
of that node’s contribution by 2

F
2 while the latter is an absolute increase from 0 to 1

4N . However, there are
at most N nodes that can switch from the waiting state to the competing state, so that contribution is at most
1
4 , thus comparably small.

Thus, within l = c logN rounds (i.e., within the time of one phase), PF can not increase by more than a
factor of 2

F
2 and an additive value of 1

4 . This guarantees that for PF to exceed 2F−1 it must hold for at least
l rounds that PF ≥ 1

2 , so all the requirements for lemma 5.2 are fulfilled.
If the constant c in the algorithm is chosen large enough, applying Chernoff bounds guarantees that,

w.h.p., there are Ω(logN) successful rounds. Each of these rounds eliminates a constant fraction of the
probability mass in expectation (by choice of A and since the probability of listening on channel H is at
least 1

4 ). But since logN = Ω(F ), w.h.p., l rounds are thus sufficient have PF drop back to a value smaller
than 1

2 , a contradiction.
Using an identical argument and that PF ≤ 2F−1 at all times, it also follows that PF ≥ 1/2 cannot hold

for l/2 consecutive rounds.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. The running time is clear from the construction of the algorithm as well is the fact
that at least one leader is elected since among the nodes that wake up in round 1, there is at least one node
that finishes its last phase without being eliminated.

For the sake of contradiction, assume that more than one leader is elected with probability more than
1/N (or any polynomial in N ). W.l.o.g., let v1 and v2 be elected leaders with age(v1) ≥ age(v2).

Assume first that age(v2) ≥ age(v1)+l/2. Then they both are in the last phase for at least l/2 rounds. In
that time interval it holds that p1(F ) = pi(F ) = 1

4 , i.e., PF ≥ 1
2 for l/2 consecutive rounds, a contradition

to the second claim of Lemma 5.3. Hence, w.h.p., age(v2) < age(v1) + l/2. But then, v1 is already a leader
for l/2 rounds before any other node becomes a leader. W.h.p. this is sufficiently long for v2 to hear node
v1 on channel L before becoming a leader. Consequently, there is only one leader w.h.p.

6 Herald Algorithm Tolerating Disruption

In this section, we address the problem of up to t ∈ [1, ρF ] nonfunctional frequencies, for some constant
ρ < 1/3. We will show that a slight adaption of the basic herald algorithm provides an asymptotically
optimal algorithm under the assumption that ρ is known to all nodes. For simplicity2, we assume that the
number of disrupted channels is t ≤ F/6. Also for simplicity, we assume that 2t divides F . As discussed
in Section 2, the adversary can freely decide which channels to disrupt just before a round starts.

The algorithm we present works similar to Algorithm 1, except that each used channel in the original
algorithm is replaced by a block of 2t channels with a total of F + 2 = F

2t blocks. Similarly to Section
5, we again assume that F ≤ logN . If it is not, we can just only use the first 2t(logN + 2) channels.
Analogously to the algorithm in Section 5, we name two of the blocks H and L and the remaining blocks
1, 2, . . . , F . Each block consists of 2t sub-channels and in a particular block b for a particular sub-channel
s the corresponding channel is denoted by channel (b, s). Each round nodes choose a block b in the same
manner as they choose channels in Algorithm 1. On the selected block b, they choose a uniformly random
sub-channel s. After choosing a channel (b, s), nodes continue in the same manner as in Algorithm 1. The
second change is that for a competing node each phase now only lasts for Θ

(
F + logN

t

)
rounds. The third

change is that a node that moves to state L does not immediately consider itself a leader, but it first becomes
2A natural generalization yields t < ρF for any ρ < 1/3: divide channels into blocks of t(1 + ε) instead of blocks of size 2t.
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Algorithm 2: Herald algorithm for disrupted channels
Major changes to the t = 0 case (besides notational changes regarding the switch from channels to blocks) are marked with an→ symbol.

State description: W – waiting, C – competing, H – herald, L – leader, E – eliminated

1 begin
2 set phase := 0; count := 0; age := 0; state := W
3 while state6= E do
4 count := count + 1; age := age + 1
5→ if count = c(F + logN/t) + 1 then
6 count := 1; phase := phase + 1

7 if phase = 1 and state = W then state := C

8 if phase = 2 logN
F + 2 and state = C then state := L

9→ Pick s uniformly at random out of {1, 2, . . . , 2t}
10 switch state do
11 case W : With prob. 1/2, listen on channel (H, s), otherwise listen on channel (L, s)
12 case C :
13 Randomly pick r ∈ [0, 1)

14 Let I := max
{
i : r ≥ (2i−F · 2(F/2)(phase−1))/(4N)

}
15 if I > F or I = 0 then
16 With prob. 1/2, listen on channel (H, s), otherwise listen on channel (L, s)
17 else
18 On channel (I, s) with probability π` listen or otherwise broadcast (id, age)

19 case H :
20 Broadcast bc on channel (H, s)
21 if bc 6= (id, age) then state := E else state := C

22 case L :
23→ if age > c′(log2N/F + t logN) then Consider yourself a leader
24 On channel (L, s) with prob. 1/2 listen, otherwise broadcast (id, age)

25 Upon receiving a message msg = (msg.id,msg.age):
26 if current block isH or L then
27 if msg.age ≥ age and msg.id 6= id then state := E
28 else // can only happen if state = C
29 state := H
30 if msg.age ≥ age then
31 bc := (msg.age + 1,msg.id)
32 else
33 bc := (age + 1, id)

a candidate. Candidates listen or broadcast their id and age on a uniformly random channel on block L. If
a candidate does not get eliminated after being in state L for Θ(t logN) rounds, it considers itself a leader.
Any node that receives a message on L can calculate itself from the age being broadcasted whether that node
is already a leader or not.
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Analysis. Analogously to section 5 we denote with Pm the sum of all nodes’ probabilities to choose block
m. A and the notion of an old herald are also analogously defined. With l = c

(
F + logN

t

)
we denote

the length of one phase. Our primary goal of this subsection is to prove the following main theorem of the
section.

Theorem 6.1. With high probability, Algorithm 2 elects exactly one leader and it does so in O
( log2N
F +

t logN
)

rounds after the first node wakes up.

First we prove in Lemma 6.2 that once the total probability mass exceeds a certain threshold, w.v.h.p.(t)
each round Ω(t) heralds of age A or higher are created. In Lemma 6.3 we show that also the total number
of heralds created each round is of order O(t) w.v.h.p.(t). Both together provide for the fact that each round,
w.v.h.p.(t), a constant fraction of the total probability mass is eliminated. Since that happens w.v.h.p.(t), a
phase does not need to last longer than Θ

(
F + logN

t

)
rounds to guarantee a probability mass reduction of

order Ω(2F ) w.h.p.(N ). We finally show that, w.h.p., at any time the number of nodes in state L is in O(t).
Θ(t logN) rounds after the first nodes move to state L, one of them can safely declare itself a leader.

Lemma 6.2. If PF ∈ [2t, 2F t] in any round, then w.v.h.p.(t) Ω(t) heralds are created, which herald the
name and age of a node of age at least A on one of the channels in blockH in the following round.

Proof. Following the lines of the proof for Lemma 5.2 we get that there is a block λ for which Pλ ∈ [2t, 4t].
Let Disλ ⊂ {1, 2, . . . , 2t} be the subset of disrupted sub-channels in block λ and let tλ := |Disλ| ≤ t. Then
define q := 1 − tλ

2t ∈ (0, 1], k := 2t − tλ, c := qPλ
k = Pλ

2t ≥ 1 and wi := pi(λ) for i = 1, 2, . . . , n, where
pi(λ) denotes the probability of node i to choose block λ. Note that

∑n
i=1wi = Pλ. We now apply Lemma

2.3, where the bins are the set of k := 2t − tλ ≥ t undisrupted sub-channels in block λ, i.e., the channels
[2t] \Disλ. W.v.h.p.(t) we get that on at least k/4 ≥ t/4 of these sub-channels the total probability mass to
choose block λ is in [1/3, 4].

Clearly the age of a node has no impact regarding the choice of a sub-channel. Thus, due to symmetry
and with analogous reasoning as in Lemma 5.2, we get that, independently, on each of those k/4 channels,
with constant probability a herald is created that broadcasts the age of an old node in the following round.
Hence, in expectation, the number of heralds created on block λ is Ω(t). Using a standard Chernoff bound
(cf. Lemma 2.2), we also get that w.v.h.p.(t) that number is Ω(t).

In Algorithm 1 we needed to make sure that there is a constant chance to have exactly one herald being
created. Here we need to be more thorough to maintain an optimal running time: we need to make sure that
Θ(t) heralds are created w.v.h.p.(t) in each round.

Lemma 6.3. If PF ∈ [2t, 2F t] in any round, then w.v.h.p.(t) O(t) heralds are created.

Proof. Let λ denote the block in which Pλ = ρ2t with ρ ∈ [1, 2). For b ∈ {1, . . . , F}, s ∈ {1, . . . , 2t}
and v ∈ V := {1, . . . , n} let Zb,s,v be the random variable that indicates whether node v chooses channel
(b, s), let Zb,s =

∑
v∈V Zb,s,v count the number of nodes on channel (b, s) and for i ≥ 1 let X(i)

b,s be an

indicator random variable for which X(i)
b,s = 1 iff Zb,s ≤ 2i and X(i)

b,s = 0 otherwise. By Lemma 2.1 the
random variables Zb,s,v are negatively associated. The same is also true for the random variables Zb,s and
the random variables X(i)

b,s for a fixed i.
We define the node-range Ri := [2i−1 + 1, 2i] and say that a channel (b, s) is in node-range i iff

Xb,s ∈ Ri. We also let Hi be the number of heralds created on all channels in range i and set γ := ln(1/π`).
The proof is now carried out as follows:

(I) First, we show that for ξ ≥ 0, the total number of nodes in all blocks b for b ≤ λ + ξ is O(2ξt)
w.v.h.p.(t).
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(II) We then show that w.v.h.p.(t), for every i ≥ 0, all blocks b with b > λ+ i together have at most O(t)
channels with at most 2i nodes.

(III) Next, we reason that w.v.h.p.(t), for every i ≥ 1, there are at most νt channels in node-range Ri for a
sufficiently large constant ν.

(IV) In the fourth part, we show that w.v.h.p.(t), channels in node-ranges larger than log t do not create any
heralds at all.

(V) Next we show that P(Hi ≥ 2ie1− γ
2

2i−1
νt+ x+ 2i) ≤ e−γx/4. Essentially, x measures how much Hi

exceeds a safe value which would guarantee a total of O(t) heralds over all node ranges.

(VI) In the last step, we use a probabilistic argument to union bound over all ’bad cases’ to show that
w.v.h.p.(t) on channels in node-range between 1 and log t, in total only O(t) heralds are created.

Part (I): The total probability for nodes to land on channels in all blocks b ≤ λ + ξ for ξ ≥ 0 is at
most

∑∞
i=−ξ Pλ · 2−i = O(2ξPλ) = O(2ξt). Therefore, the number of nodes

∑λ+ξ
b=1

∑2t
s=1

∑
v∈V Zb,s,v on

channels (b, s) in all blocks b ≤ λ+ ξ is O(2ξt) in expectation. Because the Zb,s,v are negatively associated
0/1 random variables, we can apply a standard Chernoff bound to get that the number of nodes on channels
(b, i), b ≤ λ+ ξ is also O(2ξt) w.v.h.p.(t).

Part (II): Assume that i ≥ 0, b > λ+i, and s ∈ [2t]. Further, let µ := E[Zb,s] = ρ2b−λ, k := (b−λ)−i ≥
1 and δ := 1− ρ−12−k > 1/2. By applying Lemma 2.2, we then get

pk,i := P(X
(i)
b,s = 1) = P(Zb,s ≤ 2i) = P(Zb,s ≤ (1− δ)µ) ≤ e−δ2µ/2 ≤ e−2k+i−3

.

Let Xi =
∑F

b=λ+i+1

∑2t
s=1X

(i)
b,s be the number of channels on blocks b > λ + i with at most 2i nodes.

Then:

E[X(i)] =

F−λ−i∑
k=1

2t∑
s=1

P
(
X

(i)
b,s = 1

)
< 2t ·

∞∑
k=1

e−2k+i−3
= O(t).

As before, because X(i) is the sum of negatively associates 0/1 random variables, we can apply a standard
Chernoff bound to get that X(i) = O(1) w.v.h.p.(t).

Part (III): Let Ci be the number of channels in node-range i, i.e., Ci is the number of channels with at
least 2i−1 + 1 and at most 2i nodes. By Part (I), w.v.h.p.(t), the number of nodes on blocks b ≤ λ + i is
at most O(2it). Since each channel in node-range i has at least 2i−1 + 1 nodes, w.v.h.p.(t), at most O(t)
channels on blocks b ≤ λ+ i are in node-range i. By Part (II), w.v.h.p.(t), at most O(t) channels on blocks
b > λ+ i have at most 2i nodes. Hence, overall, there are at most O(t) channels in node-range i.

Part (IV): Let Yi be the number of channels in node-range i on which heralds are created. The probability
of creating a herald on a specific channel with m ∈ Ri nodes can be computed as m(1 − π`)π

m−1
` ≤

2iπ2i−1

` = 2ie−γ2i−1
=: pi, where γ = ln(1/π`) = Θ(1).

P
( ∞∑
i=log t+1

Yi ≥ 1

)
≤

∞∑
i=log t+1

Cipi ≤
∞∑

i=log t+1

O(t)2ie−γ2i−1
= e−γ

′t, for some constant γ′ > 0.

The first inequality follows from a union bound over all Ci channels in node-range i, the second inequality
follows from Part (III).
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Part (V): Recall that pi is an upper bound on the probability that heralds are created on a specific channel in
node-range i. By Part (III), the number of channels in node-range i is at mostCi ≤ νtw.v.h.p.(t). IfCi ≤ νt,
the random variable Yi is dominated by a binomial random variable Ŷi ∼ Bin(νt, pi). If on a channel with
m nodes any heralds are created, then there are m − 1 heralds created at once, so we have that the random
variable Hi is dominated by 2iYi. We therefore have P(Hi ≥ h) ≤ P(Yi ≥ h/2i) ≤ P(Ŷi ≥ h/2i). For
k ≥ 0, we thus have

P(Hi ≥ 2ik) ≤ P(Ŷi ≥ k) ≤
(
νt

k

)
pki ≤

(
eνt

k

)k
pki =

(
e2iνt

keγ2i−1

)k
. (3)

Let αi := 2ie · e−
γ
2

2i−1
νt and ki :=

⌈
x
2i

+ αi
⌉
. Applying (3), we then get

P(Hi ≥ 4ie1− γ
2

2i−1
νt+ x+ 2i) ≤ P(Hi ≥ 2iki) ≤

(
e2iνt

kieγ2i−1

)ki (ki≥αi)
≤

(
1

e
γ
2

2i−1

)ki (ki≥x/2i)
≤ e−γx/4.

Part (VI): As before let αi := 2ie1− γ
2

2i−1
νt and note that α̂ :=

∑log t
i=1 2iαi = O(t). Let η be chosen such

that ηt− α̂ ≥ 6t and such that ηt is an integer.
By Part (IV), w.v.h.p.(t), heralds are only created on channels in node-ranges i ≤ log t. For the remainder

of the proof, we condition on the fact that this is indeed the case. We call a vector h = (h1, . . . , hlog t) for
hi ∈ N0 a herald vector with weight wh = h1 + · · ·+ hlog t; we call such a herald vector heavy iff wh = ηt.
Consider the herald vector H = (H1, . . . ,Hlog t), then its weight wH counts the total number of heralds
created. We say that H is lower bounded by h if Hi ≥ hi for all i ∈ [log t], written as H ≥ h.

If more than ηt heralds are created, then clearly H ≥ h̄ for some specific heavy herald vector h̄. We will
show that the probability of such an event is exponentially small in t. Because there are at most (ηt+1)log t =

eO(log2 t) different heavy herald vectors, the lemma then follows by a union bound over all heavy herald
vectors.

Let h̄ = (h1, . . . , hlog t) be a heavy herald vector. We define xi := max
{

0, hi − 2iαi − 2i
}

, where
i ∈ [log t]. By Part (V) we have

P(H ≥ h̄) ≤
log t∏
i=1

e−γxi/4 = e−
γ
4
·
∑log t
i=1 xi .

We therefore need to show that
∑log t

i=1 xi = Ω(t). However since xi ≥ hi − 2iαi − 2i, we have

log t∑
i=1

xi ≥
log t∑
i=1

(
hi − 2iαi − 2i

)
= ηt− α̂− 2t ≥ 4t.

We therefore get that P(H ≥ h̄) ≤ e−γt. Choosing γ appropriately this concludes the proof since

P(wH ≥ ηt) ≤
∑
h̄ heavy

P(H ≥ h̄) = e−γ̄t, for some constant γ̄ > 0.

Both lemmas provide that for PF ≥ 2 the total number of heralds created in a single round is in Θ(t).

Lemma 6.4. With high probability, at all times, it holds that PF < t2F . Further, for appropriately chosen
constant c, with high probability, there are no l/2 consecutive rounds in which PF ≥ 2t.
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Proof. As in the case of the analysis in Section 5, there are two ways in which PF can increase. Either some
nodes switch to a new phase or there are new nodes switching from the waiting into the competing state.
Analogously to the argument in the proof of Lemma 5.3, within the time of one phase, PF can only increase
by a factor of 2F/2 and a small additive amount. In order for PF to exceed t2F , PF therefore has to be at
least 2t for l consecutive rounds (i.e., for the duration of one phase). We show that for c sufficiently large,
w.h.p., this cannot be the case.

Consider some round in which PF ∈ [2t, t2F ] and assume that there are t̂ ∈ {t, . . . , 2t} channels
on block H that are undisrupted. Let X1, X2, . . . , Xt̂ be the random variables counting the number of
heralds on each of the t̂ undisrupted channels in block H. By Lemma 2.1 the random variables X1, . . . , Xt̂

are negatively associated. The same is true for the indicator random variables Xi,≤α that take value 1 iff
Xi ≤ α, where i ∈ [t̂] and α ≥ 0. We define X≤α :=

∑t̂
i=1Xi,≤α and we let p≤α denote the probability

that at most α heralds are on a specific single channel. Let 2ηt be the number of heralds on blockH for this
round for some η = Θ(t). We then have

p0 := p≤0 =

(
1− 1

2t

)2ηt (Prop. 2.4.1)

≥ e−
3
2
η,

p≤1 = p0 + ηt · 1

2t

(
1− 1

2t

)2ηt−1

= p0

(
1 +

2ηt

2t− 1

)
≥ p0 (1 + η) .

Since η is a constant, the two probabilities p0 and p≤1 are constant as well. Therefore

µ≤α := E[X≤α] = p≤αt̂.

We can apply Lemma 2.2 to get that for δ ≤ 1,

P(|X≤α − µ≤α| ≥ δµ≤α) ≤ e−δ2Θ(t).

In other words, for constant δ the X≤α are close to their expected values w.v.h.p.(t). Therefore if we choose
δ small enough (δ < η/(2η + 4)), w.v.h.p.(t), we obtain

X≤1 −X≤0 ≥ (1− δ)µ≤1 − (1 + δ)µ≤0 ≥
(
(1− δ)(1 + η)− (1 + δ)

)
· p0t̂

=
(
η − δ(2 + η)

)
· p0t̂ = Θ(t).

Therefore, w.v.h.p.(t), a constant fraction of the undisrupted channels on block H have exactly one herald.
By Lemmas 6.2 and 6.3, w.v.h.p.(t), there are Θ(t) heralds and a constant fraction of these heralds has
age at least A. By symmetry, the Θ(t) heralds that broadcast alone on some undisrupted channel of block
H are a uniformly random subset of all heralds. Hence, w.v.h.p.(t), a constant fraction of the heralds that
broadcast alone on an undisrupted channel ofH are old. Each node that listens onH therefore has a constant
probability of picking a sub-channel with exactly one old herald.

Because each node has a constant probability to listen on H, w.v.h.p.(t), a constant fraction of the total
probability contributing to PF is eliminated in each round for which PF ≥ 2t. Assume that for constants
γ̂ > 0 and ŝ > 1, with probability p := 1 − e−γ̂t, a 1/ŝ-fraction of the total probability mass is eliminated
and let us call a round successful if an 1/ŝ-fraction of the total probability mass is eliminated. In order to
get from some PF < t2F to PF < 2t w.h.p., we need Θ(F ) successful rounds in a time span of l rounds
w.h.p.(N ).

If 1 − p = e−γ̂t is more than e−3, then t is less than 3/γ̂ = O(1), having a phase lasting Ω(logN)
rounds, each being successful with a constant probability. A standard Chernoff argument gives us that Θ(l)
of them are successful w.h.p.(N ).
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If 1 − p is less than e−3, then we apply Chernoff again to show that less than a constant fraction of l
rounds are not successful. By choosing δ = eγ̂t−1 ≥ e2 and letting X count the number of unsuccessful
rounds we get:

P(X ≥ l/2) < P(X ≥ e · e−γ̂tl) = P(X ≥ (1 + δ)µ) ≤ e−µ
>0︷ ︸︸ ︷

((δ + 1) ln(δ + 1)− δ)

µ=e−γ̂tl
≤ e−l(e

−1(γ̂t−1)−e−1+e−γ̂t)
l≥c logN

t

≤ N−
c
t
γ̂t−2
e ≤ N−c

γ̂
3e

That is, w.h.p.(N ), a constant fraction of l rounds are successful. If c is chosen large enough, it follows in the
same way that, w.h.p., the maximum number of consecutive rounds in which PF ≥ 2t is less than l/2.

Lemma 6.5. With high probability, at all times, the number of candidates is O(t).

Proof. We show that at all times, the number of candidates is less than 16t with probability at least 1−N−d,
where the constant d can be chosen arbitrarily. For the sake of contradiction, assume that there is a first round
r0 in which the number of candidates is at least 16t with probability more than N−d.

We first show that between round r′ = r0 − l/2 and r0 at most 8t of all active nodes switch to state
L. Assume that this is not the case. All these 8t nodes are therefore together in the last competing phase
for at least cF/2 rounds. Because in these rounds, all 8t nodes choose channel F with probability 1/4, this
implies that there are cF/2 consecutive rounds in which PF ≥ 2t, something that does not happen w.h.p.
according to Lemma 6.4.

Hence, w.h.p., more than 8t of the candidates have already been active in round r′. Because we also
assumed that r0 is the first time, where the number of candidates is at least 16t, this also implies that overall
between rounds r′ and r0, there are less than 24t different candidates, i.e., n ∈ [8t, 24t] different candidates.

Consider some round r ∈ [r′, r0]. Assume that in round r, t̂ ∈ [t, 2t] of the 2t channels in block L
are not disrupted. Each of the n candidates picks a uniformly random channel. Applying Lemma 2.3 with
parameters q = t̂/(2t), k = t̂, and wi = 1 for i ∈ [n]—which implies c = n

2t ∈ [4, 12]— we get that
w.v.h.p.(t), on at least t̂/4 channels, there are between d4/3e = 2 and 24 nodes. On all these channels,
independently, there is a constant probability that exactly one candidate broadcasts. Hence, w.v.h.p.(t),
there are Θ(t) channels on L on which exactly one candidate broadcasts. Let a be the median age of the
candidates. As the set of the candidates broadcasting on these channels is a uniformly random subset of all
candidates in the given round, w.v.h.p.(t), there are also Θ(t) channels on which a candidate of age at least
a broadcasts. Independently, each of the Θ(t) candidates of age at most a listens with constant probability
on one of these channels. Therefore, w.v.h.p.(t), a constant fraction of the candidates is eliminated in each
round r ∈ [r′, r0]. For c large enough, this implies that in the l/2 rounds in the interval [r′, r0], w.h.p., more
than 8t candidates are eliminated, a contradiction to the assumption that the number of candidates in round
r0 is at least 16t.

We now can prove our main theorem.

Proof of Theorem 6.1. Analogously to the proof of Theorem 5.1 we have that at least one node v becomes a
leader, i.e., it moves through Θ

( logN
F

)
phases of length Θ

(
F + logN

t

)
each and is a candidate for Θ(t logN)

rounds. In total that gives a running time of

Θ

(
logN

F

(
F +

logN

t

)
+ t logN

)
= Θ

(
t logN +

log2N

F

)
.

Assume that besides v another node v′ becomes a leader. Then v′ is a candidate for Θ(t logN) rounds in
which also v is either a candidate or a leader, that broadcasts its id and age on some channel (L, s) with
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probability 1/2 each of those rounds. Since the number of candidates is in O(t) during all those rounds,
w.h.p., there is a constant probability that v broadcasts alone on an undisrupted channel in block L. On
the other hand v′ listens with probability 1/2 on block L and thus listens on the same channel on which v
broadcasts with probability Ω(1/t), i.e., in O(t) rounds there is a constant chance for v′ to hear v. Thus,
w.h.p., v′ is eliminated within O(t logN) rounds, contradicting the initial assumption.

7 Improved Trapdoor Protocol

In this section, we provide a leader election protocol that is tight (within log log factors) for t > F/6. Our
strategy is to modify the trapdoor protocol of [6] to produce a new protocol, which we call the truncated
trapdoor protocol, that behaves in an optimal manner for t values in this range.

In the trapdoor protocol, when a node is activated, it attempts to make it through logN phases without
being knocked out. For each round of each phase i a node chooses a channel with uniform randomness. If
the node is inactive (i.e., has been knocked out already) it listens. Otherwise it is active, and it broadcasts its
id and age (i.e., rounds it has been active) with probability 2i−1

N . If an active node receives a message from
another active node of the same age or older, the node is knocked out and becomes inactive. If a node makes
it through all logN phases without being knocked out, it declares itself the leader, and subsequently selects
a channel at random in each round, broadcasting its id with probability 1/2. If any node hears from a leader,
it outputs the leader id and halts.

In the version of the protocol presented in [6], the first logN−1 phases were of length Θ
( F
F−t logN

)
and

the final phase had length O
( Ft
F−t · logN

)
. Here, we consider a more efficient variant where each of the first

logN − 1 phases is reduced to length l = O
( log(N)
F−t

)
. Below, we prove that the truncated trapdoor protocol

still solves leader election. Our analysis requires that t > F/6. We assume w.l.o.g. that F − t = O(logN).
For a given round let p(v) be the probability that v broadcasts in that round (i.e., p(v) = 2i−1/N if node v
is in phase i). For each round, we define P :=

∑
v p(v). We prove that P is bounded:

Lemma 7.1. With high probability, at all times, it holds that P ≤ 4F + 1.

Proof Sketch. For the sake of contradiction, assume that P exceeds 4F + 1 with probability larger than
1/Nd, for a given constant d. In l rounds, P can only increase by a factor of 2 and by an additive amount of
1 contributed by newly activated nodes (which start in phase 1 with broadcast probability 1/N ). Hence, if
P exceeds 4F + 1, it must have been between 2F and 4F + 1 for l consecutive rounds before this point.

Consider some such round r, during which P ∈ [2F , 4F + 1]. Let t̂ ≥ F − t be the number of non-
disrupted channels in round r. We can apply Lemma 2.3 to show that, w.v.h.p.(F − t), in round r there are
at least (F − t)/4 channels on which the total broadcast probability of all nodes is between 2/3 and 10. The
parameters for the lemma are k = t̂, q = t̂/F , wv = p(v) and consequently, c ∈ [2, 5].

Now consider one such channel with a total broadcast probability between 2/3 and 10. We can choose
an age a such that at least half of the total broadcast probability comes from nodes of age at most a, and at
least half of the total broadcast probability comes from nodes of age at least a. We also note that because the
total broadcast probability is at least 2/3, and because an individual node cannot broadcast with probability
more than 1/2, we know we are dealing with at least 2 nodes. With constant probability, therefore, there
is exactly one node v of age at least a that transmits on our selected channel. Assume this event occurs. It
follows: all nodes of age at most a (except v) receive the message and are knocked out. Therefore, with
constant probability, a constant fraction of the probability mass on the channel is eliminated. This happens
independently on all channels that match our broadcast probability bound. As proved above, there at least
(F − t)/4 such channels, w.v.h.p.(F − t).
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By repeating this argument c log(N)/(F − t) times, for a sufficiently large constant c, we get that with
high probability, at least 2/3 of the initial probability mass of P is eliminated and hence P becomes less
than 2F . By choosing the constant c large enough, we therefore get a contradiction to the assumption that
P exceeds 4F + 1 with probability more than N−d.

The above lemma replaces Lemma 9 of [6], which we can then combine with the argument for Theorem
10 of that same paper to get the following:

Theorem 7.2. With high probability, the truncated trapdoor protocol elects exactly one leader and it does
so in O

(
logN+Ft
F−t · logN

)
rounds after the first node wakes up.
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Appendices
A Negatively Associated Random Variables

The notion of negatively associated random variables has been introduced in [13]. Informally, a set of
random variables {X1, . . . , Xn} is negatively associated if any two random variables that can be constructed
by monotonic functions from disjoint subsets of {X1, . . . , Xn} are negatively correlated. Formally, the
concept is defined as follows.

Definition A.1 (Negative Association). [13] Random variablesX1, . . . , Xn are called negatively associated
iff for any two disjoint sets I, J ⊂ [n] and for every two functions f : R|I| → R and g : R|J | → R such that
either f and g are both componentwise non-decreasing or both componentwise non-increasing, f(Xi, i ∈ I)
and g(Xj , j ∈ J) are negatively correlated, i.e.,

E
[
f(Xi, i ∈ I) · g(Xj , j ∈ J)

]
≤ E

[
f(Xi, i ∈ I)

]
· E
[
g(Xj , j ∈ J)

]
.

It is straight-forward that independent random variables X1, . . . , Xn are negatively associated. It is
also clear from the definition that the random variables of any subset of a set of negatively associated ran-
dom variables are negatively associated. In [10, 13], additional basic properties w.r.t. negatively associated
random variables are given.

Lemma A.1. [10, 13] The following statements are true:

(A) Let X1, . . . , Xn be negatively associated random variables. For any pairwise disjoint sets I1, . . . , Ik ⊆
[n] and for any collection of k function fi : R|Ii| → R so that either all fi are non-decreasing or all
fi are non-increasing, the random variables Z1, . . . , Zk, where Zi = fi(Xj , j ∈ Ii) are negatively
associated.

(B) Let X1, . . . , Xn and Y1, . . . , Ym be two independent collections of negatively associated random vari-
ables. Then, all the random variables X1, . . . , Xn, Y1, . . . , Ym are negatively associated.

(C) Let X1, . . . , Xn be a set of Bernoulli random variables such that Xi = 1 for exactly one index i ∈ [n].
Then, X1, . . . , Xn are negatively associated.

As shown in [10], negative association turns out to be a useful notion to study certain properties of
balls-into-bins processes, as shown by the following lemma.

Lemma A.2. Assume thatmweighted balls with positive weightsw1, . . . , wm > 0 are independently thrown
into n bins (each ball potentially using a different distribution). Let a, b > 0 be two positive constants.
Further, let Xi be the total weight of balls in bin i, let Yi be an indicator random variable for which Yi = 1
iff Xi ≥ α and let Zi be an indicator random variable for which Zi = 1 iff Xi ≤ β. The random variables
X1, . . . , Xn are negatively associated. The same is true for the random variables Y1, . . . , Yn, as well as for
the random variables Z1, . . . , Zn.

Proof. For (i, j) ∈ [n] × [m], let Xi,j be an indicator random variable for which Xi,j = 1 iff ball j lands
in bin i. Because of statement (C) in Lemma A.1, for any fixed j, the random variables X1,j , . . . , Xn,j are
negatively associated. Because the random variables Xi,j are independent for different i, by statement (B)
of Lemma A.1, all the random variables Xi,j are negatively associated. Further, because Xi = w1 ·Xi,1 +
· · ·+wm ·Xi,m, the random variablesX1, . . . , Xn are negatively associated by statement (A) of Lemma A.1.
Finally, because Yi can be computed fromXi by a non-decreasing function and because Zi can be computed
fromXi by a non-increasing function, also the random variables Y1, . . . , Yn, as well as the random variables
Z1, . . . , Zn are negatively associated.
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