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Abstract

Peer prediction methods allow the truthful elicitation of pri-
vate signals (e.g., experiences, or opinions) in regard to a true
world state when this ground truth is unobservable. The orig-
inal peer prediction method is incentive compatible for any
finite number of agents n ≥ 2 but critically relies on a com-
mon prior, shared by all agents and the center. The Bayesian
Truth Serum (BTS) relaxes this assumption. While it still as-
sumes that the agents share a common prior, this prior need
not be known by the center. However, BTS is proven to be in-
centive compatible only for a large enough number of agents,
and this number depends on the prior and is thus unknown
to the mechanism. In this paper, we present a robust BTS
for the elicitation of binary information which is incentive
compatible for any n ≥ 3, taking advantage of a particular-
ity of the quadratic scoring rule. Our mechanism is the first
peer prediction method that does not rely on knowledge of
the common prior to provide strict incentive compatibility for
any n ≥ 3. Moreover, and in contrast to the original BTS, our
mechanism is numerically robust and ex post individually ra-
tional.

Introduction
Web services that are built around user-generated content
are ubiquitous. Examples include reputation systems, where
users leave feedback about the quality of products or ser-
vices, and crowdsourcing platforms, where users (workers)
are paid small rewards to do human computation tasks, such
as annotating an image. Whereas statistical estimation tech-
niques (Raykar et al. 2010) can be used to resolve noisy in-
puts, for example in order to determine the image tags most
likely to be correct or the most likely true quality of a prod-
uct or service, they are appropriate only when user inputs are
informative in the first place. But what if providing accurate
information is costly for users, or if users otherwise have an
external incentive for submitting false inputs?

The peer prediction method (Miller, Resnick, and Zeck-
hauser 2005) addresses the quality control problem by pro-
viding payments (in cash, points or otherwise) that align an
agent’s own interest with providing inputs that are predictive
of the inputs that will be provided by other agents. Formally,
the peer prediction method provides strict incentives for pro-
viding truthful inputs (e.g., in regard to a user’s information
about the quality of a product, or view on the correct label
for a training example) for a system of two or more agents,

and when there is a common prior amongst agents and, crit-
ically, known to the mechanism.

The Bayesian Truth Serum (BTS) by Prelec (2004) still
assumes that agents share a common prior, but does not re-
quire this to be known by the mechanism. In addition to
an information report from an agent, BTS asks each agent
for a prediction report, that reflects the agent’s belief about
the distribution of information reports in the population. An
agent’s payment depends on both reports, with an informa-
tion component that rewards reports that are “surprisingly
common,” i.e. more common than collectively predicted,
and a prediction component that rewards accurate predic-
tions of the reports made by others. Compared to the orig-
inal peer prediction method, a significant drawback of BTS
in practice is that it only provides incentives for truthful re-
ports for a large enough number of agents, and this number
depends on the prior and is thus unknown to the mechanism.
In addition, BTS may leave a participant with a negative
payment and it is not numerically robust.

In this paper, we present a robust Bayesian Truth Serum
(RBTS) for the elicitation of binary information which, to
the best of our knowledge, is the first peer prediction method
that does not rely on knowledge of the common prior to pro-
vide strict incentive compatibility for any number of agents
n ≥ 3. RBTS is also ex post individually rational (so that
no agent makes a negative payment in any outcome) and nu-
merically robust, being well defined for all possible agent
reports. Moreover, the mechanism seems conceptually sim-
pler than BTS and the incentive analysis is more straightfor-
ward. RBTS applies to the same setting and takes the same
reports as BTS. As in BTS, an agent’s payment consists of
two components, one component that depends on an agent’s
information report and a second that depends on an agent’s
prediction report. The main innovation in RBTS is to induce
a “shadow” posterior belief report for an agent i from her in-
formation report and the prediction report of another agent
j, adjusting this prediction report in the direction suggested
by agent i’s information report. We couple this with a prop-
erty of the quadratic scoring rule by which an agent prefers
a shadow belief that is as close as possible to her true pos-
terior. In order to determine the agent’s payment, we then
apply both the shadow belief and the agent’s prediction re-
port to the quadratic scoring rule with the information report
of a third agent k as the event to be predicted.



In contrast to BTS, RBTS is defined here only for the
case of binary information reports; e.g., good or bad expe-
riences, or true or false classification labels. Many interest-
ing applications involve binary information reports. This is
supported by the fact that Prelec’s own experimental papers
have adopted the binary signal case (Prelec and Seung 2006;
John, Loewenstein, and Prelec 2011). Also note that as the
number of possible information reports increases, so does
the difficulty imposed on users in providing the prediction
report, which must expand to include estimates for the ad-
ditional possible information reports. We leave to future re-
search the study of extensions of RBTS that can incorporate
more than two signals.

Related Work
In addition to the original peer prediction method and the
original Bayesian Truth Serum, there is other related work:

Jurca and Faltings (2007) provide an extension to the orig-
inal peer prediction method. While they assume a common
prior shared by the agents and the center, the agents are al-
lowed to have small deviations in regard to this prior. They
show that there is a trade-off between the required budget
and the robustness in regard to these deviations from the
prior. The key difference to our work is that we do not as-
sume any knowledge about the common prior on behalf of
the center.

In another line of work, Jurca and Faltings (2008) propose
online polling mechanisms, where the current empirical fre-
quency of reports is published and updated as agents arrive.
As in BTS and RBTS, the setting assumes a common prior
known to the agents but unknown to the center. While their
scheme only requires the information report (and not the pre-
diction report), it is not incentive compatible in the sense of
our work. Rather, agents must behave strategically in de-
ciding how to report information to the mechanism (specif-
ically, in selecting a “reference”). In this way, the scheme
does not share the conceptual simplicity of our approach.
One of their main criticisms of BTS is that it needs to with-
hold all information reports until the end of the poll. This
criticism does not apply to RBTS, which easily adapts to on-
line settings by sequentially scoring groups of three agents,
and subsequently releasing their reports (which can be pub-
lished as empirical frequencies). Jurca and Faltings (2011)
also give an impossibility result in regard to incentive com-
patibility without a prior known to the center, but this pre-
cludes schemes such as BTS and RBTS, in which agents
submit both an information report and a prediction report.

A setting similar to online polling is studied by Lam-
bert and Shoham (2008), and in this case without even re-
quiring a common prior to agents. However, their mecha-
nism is only weakly incentive compatible, i.e. in the equilib-
rium, all agents are indifferent between being truthful and
misreporting. The peer prediction mechanism with private
beliefs (Witkowski and Parkes 2011) also studies a setting
without a common prior to agents. They do achieve strict
incentive compatibility for n ≥ 2, but their mechanism crit-
ically relies on “temporal separation,” i.e. the ability to elicit
relevant information from an agent both before and after she
receives her signal. While this is possible for settings such

as product rating environments, it prevents the application to
settings such as opinion polls, where an agent already holds
her information when arriving to the mechanism.

The Setting
There are n ≥ 3 rational, risk-neutral agents who seek to
maximize their expected payment. They all share the same
probabilistic belief system, which consists of two main el-
ements: types and signals. The type T is a random vari-
able which can adopt values in {1, . . . ,m}, m ≥ 2 and rep-
resents the true state of the world. Each agent i observes
a signal represented by random variable Si that is binary
and drawn from {0, 1}, sometimes represented {l, h} and
referred to as “low” and “high” respectively. The signal can
be thought to represent an agent’s experience or opinion. A
generic signal is denoted by random variable S. The agents
have common beliefs Pr(T = t) and Pr(S = h|T = t) on
the conditional probability of observing a high signal given
each possible state t. Collectively, we refer to the shared
probabilistic belief system as the common prior.
Definition 1. We require for a prior to be admissible that
• Every type occurs with positive probability, so that

Pr(T = t) > 0 for all t ∈ {1, . . . ,m}.
• Types are distinct, such that Pr(S = h|T = t) 6= Pr(S =
h|T = t′) for any two t 6= t′. We adopt the convention
that Pr(S = h|T = 1) < Pr(S = h|T = 2) < . . . <
Pr(S = h|T = m).

• The signal conditionals are fully mixed, with 0 < Pr(S =
h|T = t) < 1 for all t.

It bears emphasis that—with exception of its admissibility—
neither BTS nor RBTS assume the center to have any knowl-
edge about the prior.

Given an agent i’s realized signal si, the agent can update
her posterior belief Pr(Sj = h|Si = si) about the proba-
bility of another agent j receiving a high signal. Because of
the common prior, we can denote a generic agent’s posterior
following a high and a low signal with p{h} = Pr(Sj =
h|Si = h) and p{l} = Pr(Sj = h|Si = l), respectively. We
refer to these as “first order” signal posteriors and we have:

Pr(Sj = h|Si = si) =
m∑
t=1

Pr(Sj = h|T = t) · Pr(T = t|Si = si), (1)

where the posterior on type can be determined in the usual
way from Bayes’ rule, being equal to

Pr(T = t|Si = si) =
Pr(Si = si|T = t) Pr(T = t)

Pr(Si = si)
, (2)

and the denominator being

Pr(Si = si) =

m∑
t=1

Pr(Si = si|T = t) · Pr(T = t). (3)

These signal posteriors can be computed analogously in
the case where an agent has knowledge of two signals. We
extend the notation, so that p{h,l} represents this “second-
order” posterior following knowledge of a high signal and



a low signal. For agent i in particular, we have p{h,l} =
Pr(Sk = h|Si = h, Sj = l) for any distinct j, k 6= i. In this
case, agent i first updates the posterior on type T , Pr(T =
t|Si = si), which becomes the a priori belief on type for the
purpose of doing a second round of Bayesian updates.

The Bayesian Truth Serum
In this section, we explain the original Bayesian Truth
Serum (BTS) by Prelec (2004).1 While we present the bi-
nary version of this method, BTS is defined for an arbitrary
number of signals. Note that we adopt the convention {0, 1}
for signals to help with the presentation.

First, every agent i is asked for two reports:

• Information report: Let xi ∈ {0, 1} be agent i’s re-
ported signal.

• Prediction report: Let yi ∈ [0, 1] be agent i’s report
about the frequency of high signals in the population.

The scoring of agent i then involves three steps:

1. For every agent j 6= i, calculate the arithmetic mean of
all agent’s signal reports except i and j (with Laplacian
smoothing to avoid infinite scores associated with zero
frequencies):

x̄−ij =
1

n

∑
k 6=i,j

xk + 1

 (4)

2. For every agent j 6= i, calculate the geometric mean of all
agent’s predictions in regard to both high and low signals,
except i and j:

ȳ−ij =

 ∏
k 6=i,j

yk

 1
n−2

, ȳ′−ij =

 ∏
k 6=i,j

(1− yk)

 1
n−2

(5)

3. Calculate the BTS score for agent i:

ui =
∑
j 6=i

(
xi ln

x̄−ij

ȳ−ij
+ (1− xi) ln

1− x̄−ij

ȳ′−ij

)
︸ ︷︷ ︸

information score

+
∑
j 6=i

(
x̄−ij ln

yi
x̄−ij

+ (1− x̄−ij) ln
1− yi

1− x̄−ij

)
︸ ︷︷ ︸

prediction score

(6)

For the case of n → ∞, this simplifies and the summa-
tion over j 6= i in Equation 6 can be replaced with the in-
formation score and prediction score computed for just one,
randomly selected, j 6= i.

1In his original paper, Prelec presents two versions of BTS, one
for an infinite number of agents n→∞ and one for finite n. Given
the focus of our paper, we present the latter version.

Properties
A Bayesian Truth Serum mechanism is Bayes-Nash incen-
tive compatible if it is a strict Bayes-Nash equilibrium for all
agents to (1) report their true signal and (2) predict that the
frequency of high signals in the population is that of their
signal posterior.

Theorem 1. (Prelec 2004) The Bayesian Truth Serum is
Bayes-Nash incentive compatible for n → ∞ and all ad-
missible priors.

Prelec comments that the result also holds for suitably large,
finite n with the actual threshold depending on the common
prior. However, BTS does not align incentives for small
groups of agents. Moreover, it does not satisfy participation
constraints in that it is not interim individually rational (in-
terim IR) for small groups, meaning that an agent’s expected
payment can be negative.

Theorem 2. The Bayesian Truth Serum is not Bayes-Nash
incentive compatible or interim IR for n = 3.

Certainly this can be understood from Prelec’s treatment
of BTS. Note, however, that BTS has been discussed in var-
ious places (e.g., Jurca and Faltings, 2008; Chen and Pen-
nock, 2010) without noting this important caveat. For this
reason, we provide a constructive example, which serves to
highlight the difference between the n → ∞ and the small
n case. The example is not unique and it does not rely on
n = 3. Generally the number of agents required for BTS
to be Bayes-Nash incentive compatible depends on the prior
and is hard to characterize.

Example 1 (BTS and n = 3). Consider three agents sharing
the following prior with m = 2: Pr(T = 2) = 0.7,Pr(S =
h|T = 2) = 0.8 and Pr(S = h|T = 1) = 0.1. Based on
this, the posterior signal beliefs (following Bayes’ rule) are
p{h} = Pr(Sj = h|Si = h) = 0.764 and p{l} = Pr(Sj =
h|Si = l) = 0.339.

Consider agent 1, and assume agents 2 and 3 are truthful.
Assume that S1 = h, so that agent 1’s truthful reports are
x1 = 1 and y1 = 0.764. The expected score for the terms
in Equation 6 that correspond to agent j = 2 when agent 1
reports truthfully is:

E

[
ln
X̄−13

Ȳ−13
+ X̄−13 ln

0.764

X̄−13
+ (1−X̄−13) ln

1− 0.764

1−X̄−13

]
,

with the expectation taken with respect to random variables
X̄−13 and Ȳ−13. With probability p{h} = 0.764, agent 1
believes that x̄−13 = (1+1)/3 = 2/3 and ȳ−13 = 0.764 and
with probability 1− p{h} = 0.236 that x̄−13 = (0 + 1)/3 =
1/3 and ȳ−13 = 0.236.

We have expected information score 0.764 ln 2/3
0.764 +

0.236 ln 1/3
0.339 = −0.108 and expected predic-

tion score 0.764
(

(2/3) ln 0.764
2/3 + (1/3) ln 0.236

1/3

)
+

0.236
(

(1/3) ln 0.764
1/3 + (2/3) ln 0.236

2/3

)
= −0.117, giving

an expected score of −0.225. Considering also the score
due to the j = 3 terms, the total expected score when agent
1 is truthful is −0.450.



On the other hand, if agent 1 misreports and x1 = 0,
while still reporting y1 = 0.764, then the expected informa-
tion score component (for the j = 2 terms) would become,
E
[
ln 1−X̄−13

Ȳ ′−13

]
= 0.764 ln 1/3

0.236 + 0.236 ln 2/3
0.661 = 0.266,

which combines with the prediction score to give 0.149, and
thus, considering also the j = 3 terms in Equation 6, yields
a total expected score of 0.298. We see that agent 1 can do
better by making a misreport and that BTS fails interim IR.

Example 2 (BTS and n → ∞). Consider the same prior
but now a large number of agents. In the limit, and with re-
spect to the beliefs of agent 1, random variable X−ij takes
on value limn→∞

1
n

(
(n− 2) · p{h} + 1

)
= p{h} with prob-

ability 1; similarly, random variable Y −ij takes on value

limn→∞

(
p

(n−2)p{h}
{h} · p(n−2)(1−p{h})

{l}

)1/(n−2)

= p
p{h}
{h} ·

p
1−p{h}
{l} = 0.631 with probability 1. Similarly, Ȳ ′−13 takes

on value (1 − p{h})
p{h} · (1 − p{l})

1−p{h} = 0.301 with
probability 1. Putting this together, if agent 1 truthfully re-
ports x1 = 1 and y1 = 0.764, her expected information
score is ln 0.764

0.631 = 0.191, and her expected prediction score
is 0.764 ln 0.764

0.764 + (1 − 0.764) ln 1−0.764
1−0.764 = 0, i.e. 0.191

in total. A misreport of x1 = 0 gives expected informa-
tion score of ln 0.236

0.301 = −0.243. This confirms that BTS is
Bayes-Nash incentive compatible in the large n limit.

Having demonstrated the failure of incentive alignment
and interim IR in BTS, we also make the following observa-
tion in regard to its numerical robustness:

Proposition 3. The score in the Bayesian Truth Serum is
unboundedly negative for posterior reports yi ∈ {0, 1}.

Robust Bayesian Truth Serum
In this section, we introduce our own mechanism, the Robust
Bayesian Truth Serum (RBTS). RBTS is incentive compati-
ble for any n ≥ 3, ex post individually rational, and numeri-
cally robust. Both the setting and the reports are identical to
that of the original Bayesian Truth Serum (BTS).

Proper Scoring Rules
Proper scoring rules are functions that can be used to in-
centivize rational agents to truthfully announce their private
beliefs about the likelihood of a future event.

Definition 2 (Binary Scoring Rule). Given possible out-
comes Ω = {0, 1}, and a report y ∈ [0, 1] in regard to
the probability of outcome ω = 1, a binary scoring rule
R(y, ω) ∈ R assigns a score based on report y and the out-
come ω that occurs.

First, the agent is asked for her belief report y ∈ [0, 1].
Second, an event ω ∈ {0, 1} materializes (observed by the
mechanism) and, third, the agent receives payment R(y, ω).

Definition 3 (Strictly Proper Scoring Rule). A binary scor-
ing rule is proper if it leads to an agent maximizing her ex-
pected score by truthfully reporting her belief p ∈ [0, 1] and
strictly proper if the truthful report is the only report that
maximizes the agent’s expected score.

An example of a strictly proper scoring rule is the binary
quadratic scoring rule Rq , normalized her to give scores be-
tween 0 and 1:

Rq(y, ω = 1) = 2y − y2

Rq(y, ω = 0) = 1− y2.
(7)

Proposition 4. (Selten 1998) The binary quadratic scoring
rule Rq is strictly proper.

Note that if one applies a positive-affine transformation
to a proper scoring rule, the rule is still proper. For a more
detailed discussion of proper scoring rules in general, we
refer to the article by Gneiting and Raftery (2007).

The RBTS Mechanism
First, every agent i is asked for two reports:

• Information report: Let xi ∈ {0, 1} be agent i’s re-
ported signal.

• Prediction report: Let yi ∈ [0, 1] be agent i’s report
about the frequency of high signals in the population.

In a second step, for each agent i, select two other agents j =
i+ 1 (modulo n) and k = i+ 2 (modulo n), and calculate

y′i =

{
yj + δ, if xi = 1
yj − δ, if xi = 0

where δ = 1
2 min(yj , 1 − yj). The RBTS score for agent i

is:

ui = Rq(y′i, xk)︸ ︷︷ ︸
information score

+ Rq(yi, xk)︸ ︷︷ ︸
prediction score

(8)

Example 3 (RBTS and n = 3.) We illustrate RBTS with
the numbers from Example 1, so that p{h} = 0.764 and
p{l} = 0.339. In addition, we note that p{h,h} = 0.795 and
p{h,l} = 0.664. We consider the perspective of agent 1 (as
agent i) and let 2 and 3 play the roles of j and k, respectively.
Throughout we assume agents 2 and 3 are truthful.

We first exemplify the computation of the mechanism in
the concrete instance where S1 = h, S2 = l, and S3 = h.
Consider agent 1. For the information score, since y2 =
0.339, we have δ = 0.1695 and y′1 = y2 + δ = 0.339 +
0.1695 = 0.5085. Since x3 = 1, agent 1’s information
score is 2y′1 − y′1

2
= 2 · 0.5085 − 0.50852 = 0.758. Since

y1 = 0.764 and x3 = 1, the prediction score is 2 · 0.764 −
0.7642 = 0.944. In total, the agent’s score is 1.703.

To establish that, when S1 = h, agent 1 is best off re-
porting truthfully for the example prior, we need to con-
sider the expected score and thus the distribution on pos-
sible signals of agents 2 and 3. For the prediction report, we
have truthfulness because scoring rule Rq(y1, x3) is strictly
proper. In particular, agent 1’s expected prediction score is
0.764 · (2 · 0.764− 0.7642) + 0.236 · (2 · 0.236− 0.2362) =
0.820. For the expected information score, first consider
truthful report x1 = 1. In this case, y′1 is adjusted upwards



from the realized prediction report of agent 2. The expected
information score of agent 1 is:

Pr(S2 = h|S1 = h)·[
Pr(S3 = h|S1 = h, S2 = h) ·Rq(0.764 + 0.118, 1)

+ Pr(S3 = l|S1 = h, S2 = h) ·Rq(0.764 + 0.118, 0)
]

+ Pr(S2 = l|S1 = h)·[
Pr(S3 = h|S1 = h, S2 = l) ·Rq(0.339 + 0.1695, 1)

+ Pr(S3 = l|S1 = h, S2 = l) ·Rq(0.339 + 0.1695, 0)
]

= p{h} ·
[

p{h,h} ·
(
2 · 0.882− 0.8822)

+
(
1− p{h,h}

)
·
(
1− 0.8822)]

+
(
1− p{h}

)
·
[
p{h,l} ·

(
2 · 0.5085− 0.50852)

+
(
1− p{h,l}

)
·
(
1− 0.50852)] = 0.811

For a report of x1 = 0, agent 1’s expected information score
is:
p{h} ·

[
p{h,h} ·Rq(0.764− 0.118, 1)

+
(
1− p{h,h}

)
·Rq(0.764− 0.118, 0)

]
+
(
1− p{h}

) [
p{h,l} ·Rq(0.339− 0.1695, 1)

+
(
1− p{h,l}

)
·Rq(0.339− 0.1695, 0)

]
= 0.748

Agent 1 thus maximizes the expected information score by
reporting her signal truthfully.

Note that RBTS is strictly Bayes-Nash incentive compatible
for any n ≥ 3 and any admissible prior. We go on to prove
this in the following section.

Incentive Compatibility
We first establish some lemmas that are important in proving
the Bayes-Nash incentive compatibility of RBTS. Note that
Lemma 5 also establishes stochastic relevance, so that the
signal posteriors are distinct for distinct signal observations.
Lemma 5. It holds that 1 > p{h} > Pr(Sj = h) > p{l} >
0 for all admissible priors.

Proof. To show is that 1 > Pr(Sj = h|Si = h) > Pr(Sj =
h) > Pr(Sj = h|Si = l) > 0. The fully mixed property
of admissible priors suffices to ensure that beliefs are always
interior. Given the sorting property of admissible priors and
Equation 1 it is then sufficient to show, for all t′ < m, the
following dominance condition on beliefs in regard to type:

t′∑
t=1

Pr(T = t|Si = h) <

t′∑
t=1

Pr(T = t)

<

t′∑
t=1

Pr(T = t|Si = l) (9)

To see this, consider for example why dominance is suf-
ficient for p{h} > p{l}. For contradiction, suppose Equa-
tion 9 without this strict inequality on signal posterior. Con-
sider now a sequence of adjustments to the type posterior
Pr(T |Si = h) where in each step, working from t′ = m
to 2, the probability assigned to Pr(T = t′|Si = h) is re-
duced by the amount by which

∑t′−1
t=1 Pr(T = t|Si = h)

is less than
∑t′−1

t=1 Pr(T = t|Si = l), with this probability
assigned to the next lower type Pr(T = t′ − 1|Si = h).
This operation maintains the invariant that the total proba-
bility from 1 to t′ given h in the perturbed type posterior and
in Pr(T = t|Si = l) is equal, and thus the step is always
feasible. Moreover, it moves probability from type t′ to type
t′ − 1 and this decreases the signal posterior by the sort-
ing property and Equation 1. Eventually, we have walked
to posterior distribution Pr(T = t|Si = l) (and thus sig-
nal posterior p{l} through a sequence of steps each of which
strictly decreases the signal posterior. Contradiction, and
given Equation 9 we must have p{h} > p{l}.

For the dominance condition, note that

Pr(T = t|Si = h) ∝ Pr(Si = h|T = t) Pr(T = t) (10)
Pr(T = t|Si = l) ∝ Pr(Si = l|T = t) Pr(T = t) (11)

From this, and given that the type posterior probabilities
will be normalized to sum to 1, it is sufficient for Equation 9
that we have∑t′

t=1 Pr(Si = h|T = t)∑m
t=1 Pr(Si = h|T = t)

<
t′

m
<

∑t′

t=1 Pr(Si = l|T = t)∑m
t=1 Pr(Si = l|T = t)

(12)

for all t′ < m.
Recall that by the sorting property we have Pr(Si =

h|T = 1) < Pr(Si = h|T = 2) < . . . < Pr(Si = h|T =
m) and also Pr(Si = l|T = 1) > Pr(Si = l|T = 2) >
. . . > Pr(Si = l|T = m). Now, for t′ = 1, we have

Pr(Si = h|T = 1)∑m
t=1 Pr(Si = h|T = t)

=
A

mA+ εA
<

1

m

<
B

mB − εB
=

Pr(Si = l|T = 1)∑m
t=1 Pr(Si = l|T = t)

, (13)

where A = Pr(Si = h|T = 1), B = Pr(S = l|T = 1) and
εA, εB > 0. The first equality follows since the terms in the
denominator are strictly increasing (by sorting), the second
and third inequalities by algebra, and the second equality
since the terms in the denominator are strictly decreasing.

For the case of 1 < t′ < m, we have
t′∑

t=1
Pr(Si = h|T = t)

m∑
t=1

Pr(Si = h|T = t)
<

t′A

t′A+
m∑

t=t′+1

Pr(Si = h|T = t)

=
t′A

mA+ εA
<
t′

m
<

t′B

mB − εB

=
t′B

t′B +
m∑

t=t′+1

Pr(Si = l|T = t)
<

t′∑
t=1

Pr(Si = l|T = t)

m∑
t=1

Pr(Si = l|T = t)
,

(14)

where the first inequality follows by algebra, with A =
Pr(Si = h|T = t′) and replacing smaller terms in both the
numerator and denominator with A, the first equality recog-
nizes that the remaining terms in the denominator are strictly
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Figure 1: An example for the shadowing method with y ∈
(p{l}, p{h}). Note that p{l} is closer to y′i = y − δ than to
y′i = y + δ, and that p{h} is closer to y′i = y + δ than to
y′i = y − δ.

increasing, the second equality recognizes that the remain-
ing terms in the denominator are strictly decreasing, and the
final inequality follows by algebra, with B = Pr(Si =
l|T = t′) and replacing larger terms in the numerator and
denominator with B. This completes the proof.

The following lemma extends Lemma 5 to second-order
posteriors.

Lemma 6. It holds that 1 > p{h,h} > p{h} > p{h,l} =
p{l,h} > p{l} > p{l,l} > 0 for all admissible priors.

Proof. (Sketch) Consider p{h,h} > p{h} > p{h,l}. This
follows immediately from the same analysis as Lemma 5,
with the type posterior Pr(T = t|Si = h) taking the role of
the a priori type belief Pr(T = t) in the analysis. Then, we
have p{h,l} = p{l,h}, and the other case, p{l,h} > p{l} =
p{l,l} can be shown analogously.

Lemma 7 (Minimize Distance). Let p ∈ [0, 1] be an agent’s
true belief about a binary future event. If the center scores
the agent’s belief report according to the quadratic scoring
rule Rq but restricts the set of allowed reports to Y ⊆ [0, 1],
a rational agent will report the y ∈ Y with minimal absolute
difference |y − p|.

Proof. The expected score of reporting y if p is the true be-
lief isE[y] = p·

(
2y − y2

)
+(1−p)·

(
1− y2

)
. The expected

loss is thusE[p]−E[y] = p·
(
2p− p2

)
+(1−p)·

(
1− p2

)
−

p ·
(
2y − y2

)
− (1−p) ·

(
1− y2

)
= (p− y)2. That is, given

a set of reports Y , a rational, selfish agent will report the y
that minimizes (p− y)2 and thus minimizes |p− y|.

This property is not satisfied by all proper scoring rules.
In particular, the two other frequently cited proper scoring
rules, the logarithmic and the spherical rule, do not satisfy
this property.

A Proper Scoring Rule for Eliciting Signals: The
“Shadowing” Method
Proper scoring rules allow us to elicit probabilistic beliefs,
but it is unclear how to elicit signals truthfully. The follow-
ing “shadowing” method achieves just that.

Let ω ∈ {0, 1} denote a binary future event. (In the context
of RBTS this will be the information report by some agent
k 6= i.) In describing the method, we make this general
by allowing agent i to have observed a sequence of signals
I ∈ {0, 1}o before with o denoting the number of signals
agent i has observed.

1. Agent i receives a signal Si ∈ {0, 1} = {l, h} and, de-
pending on this signal and previously observed signals I,
forms a posterior belief p ∈ {p{l,I}, p{h,I}} about ω. (If
the prior is admissible, it holds that p{l,I} = Pr(ω =
1|Si = l, I) < Pr(ω = 1|Si = h, I) = p{h,I}.)

2. The center asks the agent for signal report xi ∈ {0, 1}
and transforms it into a probabilistic “shadow” posterior
y′i by:

y′i =

{
y + δ, if xi = 1
y − δ, if xi = 0,

(15)

where y ∈ [0, 1] is a parameter of the method, and δ =
1
2 min(y, 1− y).

3. The “shadow” posterior report y′i and the event ω that
eventually materializes is then applied to the quadratic
scoring rule Rq to give agent i a score of:

Rq(y′i, ω) (16)

Lemma 8 (Strict Properness). Agent i uniquely maximizes
her expected score in the shadowing method by truthfully
reporting her signal if y ∈ (p{l,I}, p{h,I}).

Proof. Note that 0 < y < 1 and thus δ > 0. Without loss
of generality, suppose agent i’s signal is Si = h and signal
posterior is p{h,I}. The argument is symmetric for Si = l
and posterior p{l,I}. There are two cases:

• y + δ ≤ p{h,I}. But now δ > 0, and so y − δ < y + δ ≤
p{h,I} and the result follows by Lemma 7.

• y + δ > p{h,I}. But now y < p{h,I} and so (y +
δ) − p{h,I} < p{h,I} − (y − δ) and the result follows
by Lemma 7.

Theorem 9. The Robust Bayesian Truth Serum is Bayes-
Nash incentive compatible for any n ≥ 3 and all admissible
priors.

Proof. Fix some i, j and k. It needs to be shown that given
agents j and k report honestly, it is the unique best response
for agent i to report honestly as well. Noting that the only
effect of yi is on the prediction score, and that strict Bayes-
Nash incentive compatibility follows there from the use of a
quadratic scoring rule, we then focus on xi, which affects y′i
and thus the information score.

There are two cases to consider in regard to agent j:

1. Sj = h and so yj = p{h} in equilibrium. Conditioned
on this additional signal information, agent i’s posterior
signal belief would be p{h,h} if Si = h and p{l,h} if Si =
l. By Lemma 8 it is sufficient that p{l,h} < yj = p{h} <
p{h,h}, which holds by Lemma 6 and the fact that the prior
is admissible.

2. Sj = l and so yj = p{l} in equilibrium. Conditioned
on this additional signal information, agent i’s posterior
signal belief would be p{h,l} if Si = h and p{l,l} if Si = l.
By Lemma 8 it is sufficient that p{l,l} < yj = p{l} <
p{h,l}, which holds by Lemma 6 and the fact that the prior
is admissible.
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Figure 2: An example for RBTS in the Sj = h case. Note
that yj is always strictly in between agent i’s two possible
second-order posteriors p{l,h} and p{h,h}.

Other Properties & Discussion
Theorem 10. The Robust Bayesian Truth Serum is ex post
individually rational.

Proof. The quadratic scoring rule is normalized to have
scores on [0, 1].

Proposition 11. The scores in the Robust Bayesian Truth
Serum are in [0, 2] for any reports from agents including any
yi ∈ [0, 1].

Proof. The binary quadratic scoring rule Rq(y, ω) is well-
defined for any input y ∈ [0, 1] and ω ∈ {0, 1}. The inputs
to Rq for computing the information score are y := y′i ∈
[0, 1] and ω := xk ∈ {0, 1}. Note that reports yj = 0
and yj = 1, in particular, lead to y′i = 0 and y′i = 1, re-
spectively, which are well-defined inputs to Rq . The inputs
for computing the prediction score are y := yi ∈ [0, 1] and
ω := xk ∈ {0, 1}.

Note also that if a designer has a particular budget B > 0
then a straightforward extension is to multiply Rq with a
positive scalar α > 0 to implement a mechanism that con-
forms with any budget constraint, since the total ex post cost
is upper-bounded by 2αn.

A simple randomized extension of RBTS achieves con-
stant ex post budget of B > 0 for groups of n ≥ 4 by
randomly excluding an agent from the population, running
RBTS with budget B > 0 on the remaining n − 1 agents,
and redistributing whatever remains from B to the excluded
agent. Note that this extension to RBTS is still incentive
compatible when the agents do not know which of them is
the excluded agent. Moreover, the same technique can be
used to implement a mechanism with B = 0.

Also note that in contrast to BTS, RBTS easily adapts to
online polling settings, where the center seeks to publish
partial information as agents arrive. Since RBTS achieves
incentive compatibility for any group with n ≥ 3 agents,
the center can sequentially score groups of three, and subse-
quently release their reports.

Conclusion
In this paper, we introduced a novel Bayesian Truth Serum
which takes the same inputs as the original Bayesian Truth
Serum by Prelec but achieves strict Bayes-Nash incentive
compatibility for any number of agents n ≥ 3. It is in-
teresting to see that a particularity of the quadratic scoring

rule allows the development of proper scoring rule based
mechanisms for eliciting signals. Using this “shadowing”
method, we developed a constructive proof for the incen-
tive compatibility of our Robust Bayesian Truth Serum. The
quadratic scoring rule also proved to be advantageous in re-
gard to numerical stability, because in contrast to the log-
arithmic rule, for example, it allows, and can adequately
score, belief reports of 0. We believe that RBTS can have
practical impact, providing a more principled approach to
incentivize small groups of workers on crowdsourcing plat-
forms such as Amazon Mechanical Turk (AMT), where the
original Bayesian Truth Serum has already been shown to be
useful for quality control (Shaw, Horton, and Chen 2011).
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