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Abstract
This report provides additional results on multiview deblurring and accompanies the work in [11]. In particular,
we provide images of all data sets before and after reconstruction. Moreover, we give more insights into the point
spread function (PSF) of the Single Plane Illumination Microscope (SPIM) theoretically and empirically. Finally,
the influence of the number of views on the resolution in frequency space is discussed.

1 Introduction
Single Plane Illumination Microscopy (SPIM) [4] is a powerful tool for recording deep inside live embryos.
It combines the advantages of widefield and confocal microscopy to produce images of high resolution of e.g.
zebrafish embryos. SPIM is fast since it records the whole image plane at once (like the widefield) however it only
collects light from one plane which keeps the scattering small. The quality of the images is slightly worse than
images recorded with confocal microscopy. Beside the very low photo-damaging and the high recording speed
one major advantage of the SPIM setup is its mounting technique inside a gel cylinder which makes the objects
to be recorded easily movable. Thus one is able to rotate the gel cylinder easily and take images from the same
object from different views. In this way one can compensate for absorption and scattering by just taking another
image from a slightly different angle. The resulting recordings comprise a number of different views of the same
object which need to be 1. registered and 2. fused.

Many solutions for the post processing of the SPIM images have already been proposed ([9], [7], [5]) and
solutions for higher resolved images have been sought on both hardware and software sides. Only a combination
of high quality hardware and specialized algorithms for this hardware will lead to good results.

In this work we would like to provide additional results to the multiview-deblurring algorithm proposed in [11].
Our algorithm is termed Lucy-Richardson Multiview Overlap-Save with Total Variation regularization (LRMOS-
TV).

2 Typical 72h Zebrafish structures
In Fig. 1 we display confocal recordings for some typical zebrafish structures. These images are used as ground
truth and are later on artificially degraded by spatially-variant blur and Poisson noise to create training and test
datasets.

(a) eye, xy-slice (b) ear, xy-slice (c) brain, xy-slice

(d) eye, xz-slice (e) ear, xz-slice (f) brain, xz-slice

Figure 1: Three 72h zebrafish structures from zebrafish e7 used for the training of the parameter λ representing
different textures present in the zebrafish anatomy. The pupil of the eye consists of a large isotropic texture,
whereas the brain texture consists of small cells. The top row represents the xy-slice for z = 62; the bottom row
is the xz-slice for y = 62.

1



3 Multiview Deblurring results for Varying Lambda
We use the Signal-To-Noise-Ratio (SNR) in order to obtain quantitative results. The SNR is defined using the
relation between the ground truth image u and the reconstructed image û as:

SNR(u, û) = 10 log10

( ∑
s∈Ωs

(u(s)− µ)2∑
s∈Ωs

(u(s)− û(s))2

)
, (1)

where

µ =
1

|Ωs|
∑
s∈Ωs

u(s) (2)

is the mean value of the original image.
In Tab. 1 we display the results in terms of the SNR when modifying the regularization parameter λ in the

LRMOS-TV algorithm applied to the training data set. It consists of three different structures (ear,eye,brain) from
three different data sets (e7,e9,e11). In average the best results are obtained for λ = 0.002. For smooth areas a
higher value of λ can be chosen (i.e. eye e7,e9), however this will harm other parts (i.e. brain) which contain more
textured structures. Thus, choosing λ = 0.002 showed to be the best parameter for deblurring the zebrafish data.

Dataset, structure λ = 0 λ = 0.0002 λ = 0.002 λ = 0.02
e7, brain 8.55 8.57 8.72 8.40
e9, brain 10.40 10.44 10.67 10.62

e11, brain 12.40 12.41 12.46 12.06
average, brain 10.45 10.47 10.62 10.36

e7, eye 14.06 13.79 14.15 14.16
e9, eye 13.11 13.16 13.46 13.48

e11, eye 11.28 11.29 11.43 11.21
average, eye 12.94 12.74 13.01 12.95

e7, ear 13.08 13.10 13.23 13.15
e9, ear 13.74 13.78 14.04 14.22

e11, ear 12.84 12.85 12.90 12.76
average, ear 13.22 13.24 13.39 13.38

Table 1: Training of the optimal λ. The SNR after 10 iterations is displayed for different values of λ and three
different datasets as well as there average.

Visual results of LRMOS-TV for different values of λ on the eye structure (Tab. 2), the brain structure (Tab.3)
and the ear structure (Tab.4) for the training data e7, e9 and e11 are presented. Regularization (λ = 0.002)
suppresses the noise while preserving the image borders.
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Data set: eye Original Degraded Restored λ = 0 Restored λ = 0.002

e7, xy-slice

e7, xz-slice
SNR=11.12 SNR=14.06 SNR=14.15

Data set: eye Original Degraded Restored λ = 0 Restored λ = 0.002

e9, xy-slice

e9, xz-slice
SNR=10.84 SNR=13.11 SNR=13.46

Data set: eye Original Degraded Restored λ = 0 Restored λ = 0.002

e11, xy-slice

e11, xz-slice
SNR= 9.66 SNR=11.28 SNR=11.43

Table 2: The resulting xy-slice and xz-slice after performing the LRMOS-TV algorithm for the eye in data sets
e7, e9 and e11.

3



Data set: ear Original Degraded Restored λ = 0 Restored λ = 0.002

e7, xy-slice

e7, xz-slice
SNR=10.92 SNR=13.08 SNR=13.23

Data set: ear Original Degraded Restored λ = 0 Restored λ = 0.002

e9, xy-slice

e9, xz-slice
SNR=11.27 SNR=13.74 SNR=14.04

Data set: ear Original Degraded Restored λ = 0 Restored λ = 0.002

e11, xy-slice

e11, xz-slice
SNR=11.26 SNR=12.84 SNR=12.90

Table 3: The resulting xy-slice and xz-slice after performing the LRMOS-TV algorithm for the ear in data sets
e7, e9 and e11.
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Data set: brain Original Degraded Restored λ = 0 Restored λ = 0.002

e7, xy-slice

e7, xz-slice
SNR=6.78 SNR=8.55 SNR=8.72

Data set: brain Original Degraded Restored λ = 0 Restored λ = 0.002

e9, xy-slice

e9, xz-slice
SNR=8.85 SNR=10.40 SNR=10.67

Data set: brain Original Degraded Restored λ = 0 Restored λ = 0.002

e11, xy-slice

e11, xz-slice
SNR=10.82 SNR=12.40 SNR=12.46

Table 4: The resulting xy-slice and xz-slice after performing the LRMOS-TV algorithm for the brain in data sets
e7, e9 and e11.
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4 Comparison to State-Of-the-art Methods
The comparison of LRMOS-TV with state-of-the-art methods (Blending [7], No regularization [6], Regularization
and constant PSF [2]) is conducted on the test dataset e6. The xy− and xz− slices from the original images of
those three structures are given in Fig. 2, Fig. 3 and 4. The reconstructed images are given in Tab. 5 for the ear,
Tab. 6 for the eye and Tab. 7 for the brain structure. The LRMOS-TV algorithm perform best in terms of SNR.

(a) xy-slice, z = 62 (b) xz-slice, y = 62

Figure 2: Original image ear e6.

Degraded, Blending [7] No regularization [6] Regularization [2] LRMOS-TV
view 0◦

xy-slice, z = 62

xz-slice, y = 62
SNR=9.78 SNR=10.09 SNR=11.50 SNR=11.64 SNR=11.93

Table 5: The resulting xy-slice and xz-slice after performing Blending [7], No regularization [6], Regularization
[2] and the LRMOS-TV algorithm for the ear in data sets e6.
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(a) xy-slice, z = 62 (b) xz-slice, y = 62

Figure 3: Original image eye e6.

Degraded, Blending [7] No regularization [6] Regularization [2] LRMOS-TV
view 0◦

xy-slice, z = 62

xz-slice, y = 62
SNR=11.41 SNR=12.24 SNR=12.47 SNR=12.52 SNR=13.40

Table 6: The resulting xy-slice and xz-slice after performing Blending [7], No regularization [6], Regularization
[2] and the LRMOS-TV algorithm for the eye in data sets e6.
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(a) xy-slice, z = 62 (b) xz-slice, y = 62

Figure 4: Original image brain e6.

Degraded, Blending [7] No regularization [6] Regularization [2] LRMOS-TV
view 0◦

xy-slice, z = 62

xz-slice, y = 62
SNR=10.62 SNR=11.06 SNR=11.83 SNR=11.95 SNR=12.69

Table 7: The resulting xy-slice and xz-slice after performing Blending [7], No regularization [6], Regularization
[2] and the LRMOS-TV algorithm for the brain in data sets e6.
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5 Experimental PSF
In Fig. 5 we display the PSFs of six views measured using the same bead. The PSF shape of the SPIM can be
approximated by a three-dimensional Gaussian Function [3], however using simply Gaussians to model the PSF
is not sufficient to describe the true PSF shape. Due to off-axis lens distortions and small errors during the light
sheet alignment, the measured PSF is additionally sheared and no longer perfectly symmetrical.

Figure 5: Extracted PSFs from the 6-view acquisition of the zebrafish embryo displayed as xz-slices.

We have measured the standard deviation of the beads in x, y and z direction and have found, that the elon-
gation of the bead in axial direction is bigger towards the end of the lightsheet and smaller in the middle of the
lightsheet (Fig.6 from [10]). This observation was used to simulate the PSF of the SPIM for generating training
and test data sets. The synthetic PSF is computed by a parametric model:

H(x,x′) = exp

(
− (x− x′)2 + (y − y′)2

σ2
+

(z − z′)2

(4 · xc · σ)2

)
, (3)

where x = (x, y, z), x′ = (x′, y′, z′), xc = (x−xhalf)/xhalf+1 and xhalf denotes half of the size of the x-dimension
size of the image.
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Figure 6: The standard deviation σ along x, y, z-axis of a Gaussian fitted to the beads depending on their position
in the y-plane for the original image.
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6 Missing Cone Problem and Multiview Fusion
The conventional epi-fluorescence widefield microscope suffer from the fact that some frequencies cannot be
recorded due to the optical setup of the system. This problem is often referred to as the ’missing cone’ problem
and can be observed by computing the Fourier transform of the point spread function (PSF) of the system called
the optical transfer function (OTF) (Fig. 7 ). Theoretically the OTF can be computed from the numerical aperature
(NA) of the used objective and the refractive indices of the immersion medium and the imaged sample [8]. The
OTF of the SPIM differs from the traditional widefield PSF (Fig. 8). It is a multiplication of the illumination
wide-field PSF and a 90◦ rotated detection wide-field PSF [3]. Thus the effect of the missing cone is reduced,
however the ratio of lateral and the axial extents of the PSF is at best 1/3 (e.g. for NA = 1.3). Thus the frequency
space tends to be well filled along the lateral axes but less well filled along the z-axis.

By fusing 3D images from multiple directions the frequency space is filled more evenly. Ideally, the multiple
views fill the frequency space isotropically. Under such circumstances, the lateral extents of the single view
system PSF dominate the image reconstruction process and the multiview reconstruction provides a better and
more isotropic resolution. Two opposing views (i.e. rotation around 180◦) will have almost identical blurring
function. Two views orthogonal to each other (i.e. rotation around 90◦) contain more information and will
produce a more isotropic resolution. Combining the views will produce a higher resolved image, however the
reconstructed PSF will reveal the recording directions. Thus in order to obtain a perfect PSF an infinite number
of views should be used. As stated in [6] the ideal number of views depends on several practical parameters: the
NA of the lens, the durability of the specimen and available recording and processing time. However, a perfect
reconstruction can only be obtained for infinitely many views [1] .

We visualize the effect of the multiple views on the OTF of the system schematically in Fig. 9. The minimum
cutoff-frequency is reduced if multiple views are used.
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(a) PSF - single view (b) OTF - single view

(c) PSF - simulated: central xy-slice (left) and central xz-slice (right)

(d) OTF - simulated: central xy-slice (left) and central xz-slice (right)

Figure 7: A schematic rendering of the widefield microscopes PSF (a) and OTF (b). Central slices of the same
PSF and OTF are displayed in (c) and (d). The coordinates in the spatial domain are referred to as x, y, z and in
the frequency space as u, v, w The missing cone is clearly visible in the Fourier domain.
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(a) PSF - recorded: central xy-slice (left) and central xz-slice (right)

(b) OTF - recorded: central xy-slice (left) and central xz-slice (right)

Figure 8: Central slices of PSF and OTF recorded with our SPIM setup are displayed in (a) and (b). The effect of
the missing cone is reduced when compared with the simulation of a widefield PSF (Fig. 7).

Figure 9: The minimum and the maximum cut-off frequency in the uw-plane for multiple views. Additional views
decrease the minimum cut-off frequency.
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