
Access Permission Contracts for Scripting Languages

Phillip Heidegger Annette Bieniusa Peter Thiemann
University of Freiburg, Germany

{heidegger,bieniusa,thiemann}@informatik.uni-freiburg.de

Abstract
The ideal software contract fully specifies the behavior of an oper-
ation. Often, in particular in the context of scripting languages, a
full specification may be cumbersome to state and may not even be
desired. In such cases, a partial specification, which describes se-
lected aspects of the behavior, may be used to raise the confidence
in an implementation of the operation to a reasonable level.

We propose a novel kind of contract for object-based languages
that specifies the side effects of an operation with access permis-
sions. An access permission contract uses sets of access paths to
express read and write permissions for the properties of the objects
accessible from the operation.

We specify a monitoring semantics for access permission con-
tracts and implement this semantics in a contract system for
JavaScript. We prove soundness and stability of violation under
increasing aliasing for our semantics.

Applications of access permission contracts include security,
enforcing modularity, test-driven development, program under-
standing, and regression testing. With respect to testing and un-
derstanding, we find that adding access permissions to contracts
increases the effectiveness of error detection through contract mon-
itoring by 6-13%.

1. Introduction
Design by contract is a methodology for software development
based on specifications (contracts) of operations [35, 36]. The cor-
rectness of an implementation with respect to a contract may be
statically guaranteed by program verification or it may be dynam-
ically checked with contract monitoring. As the latter variant per-
mits more expressive specifications and puts less demands on the
theorem proving skills of the programmer, it is widely used in prac-
tice as evidenced by implementations of contract checking in vari-
ous forms and for many languages [1, 14, 15, 16, 17, 24, 27, 29, 44].

Originally, contracts were meant to provide full specifications.
However, contracts for partial specifications, which only fix certain
aspects of an operation, also have their uses. For example, in a
dynamically-typed language, like Scheme or JavaScript, a contract
could have the form of an expressive type signature and impose
restrictions similar to a type system [2, 24, 43]. Contract monitoring
for such type contracts detects type errors at operation boundaries.

A type contract has one important drawback. It only imposes
restrictions on the values passed to an operation and returned from
it. In an imperative language like Scheme or JavaScript, many
operations have an effect on the heap, which is not captured by
a type contract. For those operations, a contract that also specifies
the effect would be more appropriate.

In the past, this drawback has driven the evolution of type sys-
tems towards effect systems that enable the specification and in-
ference of side effects (e.g., [19, 42]). In analogy, we propose to
extend type contracts with a language-dependent notion of effects
and to check them with an application-dependent notion of mon-

Widget
x, y, w, h, visible
layout(x,y)
mark(vx,vy,vw,vh)

TextView TreeViewButton

l

r

Figure 1. Example widget hierarchy.

itoring. In this paper, we develop a notion of effects suitable for
scripting languages and for JavaScript in particular. The applica-
tion scenarios that we have in mind are security, enforcing modu-
larity, test-driven development, program understanding, and regres-
sion testing.

1.1 Effects for Scripting Languages
Like other scripting languages, JavaScript implements an object as
a property-to-value map. Thus, every read or write access to an
object graph can be described by a base object, a path (a sequence
of property names), and a classifier indicating the operation on the
last step of the path (read or write).

This observation has lead us to define effects by access permis-
sions that specify a set of paths that an operation may read or write
relative to some base object in scope. Most of the time, the base
object is this or an argument of the operation, but a global variable
may also be used.

As an example, consider a JavaScript implementation of the
widget class hierarchy described by the class diagram in Fig. 1. The
layout operation computes the screen position of each widget. It ac-
cepts a pair of absolute starting coordinates and returns the width
and height of the rendered widget. As a side effect, it stores the
bounding box of each subwidget in its representation. A program-
mer working on the code of this operation might like to ascertain
that the layout computation only ever changes the bounding box
properties of a widget by attaching the following contract to the
layout operation:

(int, int) → {w: int, h: int} with [this.∗./x|y|w|h/]

This contract specifies an operation that accepts two integers, re-
turns an object with two integer properties named w and h, and
modifies at most the x, y, w, and h properties of objects reach-
able through this. Furthermore, the contract allows the operation to
read all properties reachable through this: a write path has to match
the entire access permission, whereas a read path is accepted if it
matches a prefix of the permission. More precisely, this specifies
the base object, “.” separates the path components, ∗ matches any
sequence of property names, and /x|y|w|h/ is a regular expression
that matches the names of the properties with write permission.

In the implementation, a set of properties can be specified
with a JavaScript regular expression and any such set can be it-

1 2011/7/13

erated using the ∗ operator. For example, granting permission to
access any property of window except location may be expressed by
... with [window./ˆ((?!location$).)/].

1.2 Application Scenarios
Regarding the application scenarios, contract monitoring for the
layout contract is useful during the initial test-driven development
of the code because any violation of the access permission would
trigger an exception as part of a test run. It is also useful for pro-
gram understanding. A programmer who would like to confirm
that the layout operation works in the outlined way would impose
the contract and watch for failing test cases. The access permissions
also indicate what operations are independent of one another. For
example, an operation that marks those widgets which are visible
in a given viewport might have a contract like this:

({vx: int, vy: int, vw: int, vh: int}) → void
with [$1.?.@, this./l|r/∗./x|y|w|h/.@, this./l|r/∗.visible]

It expresses that any property1 of the first parameter2 may be read,
but not written3; only the bounding box of a widget may be read;
and only its visible property may be written. Only l and r properties
may be traversed recursively. In regression testing, changes to the
code that violate the contract would be detected early in a run of a
test suite, assuming sufficient coverage.

For a security scenario, consider that Web browsers maintain a
number of “magic properties” where an assignment causes a signif-
icant change of the browser’s state (for example, window.location)
or where a read operation may unveil sensitive information of the
user (for example, document.cookie). Wrapping a monitored con-
tract around a suspicious piece of code can easily reveal and prevent
this kind of problem.

Last, but not least, modularity: JavaScript programs often rely
on a number of libraries and freely include third-party code (mash-
ups) that may change arbitrarily between different program runs.
Programmers do not want this code to corrupt their global variables
or to inflict arbitrary changes on their object structures. Wrapping
a monitored contract around the third-party code confines these
effects and guarantees the integrity of the program’s state.

1.3 Monitoring of Effects
There are two approaches to defining a semantics of monitoring for
an access permission. The location-based semantics keeps track of
a set of object locations and their permissions. It traverses the object
graph starting from the base object according to the access paths
and registers a read or write permission (according to the path’s
classification) for each object property along the path. In contrast,
a path-based semantics keeps track of access paths at run time and
computes the permission at a read/write access based on the path
through which the property is reached.

Both semantics have strengths and weaknesses. In the absence
of aliasing, the location-based semantics is equivalent to the path-
based semantics. In the presence of aliasing, the semantics differ
and thorough understanding is required to predict the behavior. The
following example highlights the differences. It is further elabo-
rated in Sec. 2.1.

Suppose an object is reachable from the base object via two dif-
ferent paths, where one path grants write permission for property
p, but a second path grants read permission, only. In the path-based
semantics, the path used to access the object determines the permis-
sion, but which permission should be granted by the location-based
semantics? If p gets write permission, then an execution that arrives

1 The symbol ? stands for the regular expression /.∗/.
2 Parameters may be referenced by name or by position using $1, $2, . . .
3 A path ending in @ indicates a read-only path.

at the object via the read path can write. If p only gets read permis-
sion, then an execution that arrives at the object via the write path
cannot write. As accesses that are not mentioned in the permission
are forbidden by default, the only possibility is to assign each prop-
erty the least restrictive permission of all reaching paths. In this
case, the location-based semantics would assign write permission,
but the resulting behavior may not be intuitive. A similar dilemma
arises if the second path grants access to the object containing p,
but not to p itself.

Both location- and path-based semantics are non-trivial to im-
plement efficiently. With the location-based semantics, the installa-
tion of a contract requires that the locations of all objects reachable
through the contract’s access paths must be marked with access
rights. This marking cannot be delayed because aliasing may pro-
vide a shortcut into a data structure on which the contract grants
read or write permission. In the worst case, the time needed to in-
stall a contract is unbounded because it may require a traversal of
the entire object graph. A read or write operation can be imple-
mented in almost constant time.

In contrast, the path-based semantics requires time linear in the
number of installed contracts for each read and write operation,
whereas the installation of a contract takes constant time. Read
operations are a bit tricky because they have to juggle access paths
in the right way (see Sec. 3.2).

We have chosen the path-based semantics because its semantics
enjoys a number of desirable properties (see Sec.2) and its imple-
mentation cost in terms of run time is reasonable. Furthermore, we
found that it is sufficiently flexible to support all intended applica-
tion scenarios.

Contributions
1. Design of a contract framework with access permissions.

2. Specification of a path-based formal semantics of access per-
missions and their dynamic enforcement (monitoring).

3. Formal proof that the semantics guarantees stability of access
violations under addition of aliasing, subject to mild conditions.

4. Prototype implementation of access permissions with monitor-
ing in a contract and testing framework for JavaScript.The im-
plementation is based on program transformation.

5. Assessment of the effectiveness of access permission contracts
by observing the impact of random code modifications on hand-
annotated case studies.

6. Practical evaluation of the approach on different code bases.

Outline
In Sec.2, we explain the design principles underlying our contract
framework with examples and explore some of the alternatives and
consequences. Section 3 presents a formal framework for reason-
ing about access permissions. It presents an operational semantics
of contract monitoring and formally defines and proves two proper-
ties that underline the design principles. Section 4 explains the ba-
sic approach taken by the implementation. The evaluation in Sec. 5
explores the effectiveness of access permission for detecting pro-
gramming errors using mutation testing. Section 6 outlines the ex-
tensions necessary to reliably support the security application. A
discussion of related work (Sec. 7) leads to the conclusions of the
paper (Sec. 8).

This is the technical report that extends the submitted paper by an
appendix with further examples, a definition of the location-based
semantics, proofs of all theorems, and additional information
regarding the case studies.

2 2011/7/13

2. Design Principles
The design of our monitoring semantics obeys four principles.

Path-Based Semantics An access permission grants the right to
read or modify a property of an object depending on the path
through which the object was reached.

Dynamic Extent An access permission for a function is in force
for the duration of a function activation.

Pre-State Snapshot An access permission applies to objects and
paths in the heap at the time the contract is installed.

Last Writer Wins The last write operation to a property deter-
mines the access rights for future readers of the property.

These principles explain the behavior of the semantics in corner
cases involving aliasing. In the vast majority of uses, the program-
mer can work from the intuition provided in Sec. 1.

This section explains the principles, gives a critical overview of
the alternatives, and thus provides a rationale for the choices in our
framework. These principles are by and large motivated by work
on static effect systems [19, 22].

2.1 Path-Based Semantics
An access permission grants the right to read or modify a
property of an object depending on the path through which
the object was reached.

This principle has two consequences.

Reference Attachment Permissions are attached to individual ref-
erences, not to heap locations. That is, if two variables or prop-
erties hold a reference to the same object, then accesses through
each variable may have different access rights.

Stability of Violation An access violation is preserved under in-
creased aliasing. See Sec. 3.5 for a formal statement.

Section 1.3 already argues in favor of the path-based semantics.
Here, we give a concrete example where the location-based seman-
tics behaves unexpectedly.

1 /∗c ({}, {}) → any with [x.b,y.a] ∗/
2 function h(x, y) {
3 y.a = 1;
4 y.b = 2; // violation?
5 }
6 function h1() {
7 var o = { a: −1, b: −2 };
8 h(o, o);
9 }

A static analysis would find that any invocation of function h
should result in an access violation because the contract disallows
accessing y.b in line 4.

The path-based semantics is consistent with such an analysis:
Any invocation of h —in particular the call from h1— triggers a
contract violation regardless of the aliasing among the arguments.
We call this behavior stability of violation.

With the location-based semantics, h1 would not trigger a vio-
lation. As x and y are aliased, their underlying location would ob-
tain permission to write properties a and b and the two assignments
would go through without violation. Furthermore, the location-
based semantics breaks stability of violation. Calling h without
aliasing as in h2 detects a violation.

10 function h2() {
11 h({ a: −1, b: −2 }, { a: −1, b: −2 });
12 }

In a security setting, the location-based semantics appears better
suited because a permission like window./ˆ((?!location$).)/ seems
to rule out any access to the location property of the window object,
even if this object is reached via some alias. However, the following
example demonstrates that this appearance is deceptive:

13 /∗c ({}, any) → any with [x.?,window./ˆ((?!location$).)/] ∗/
14 function k(x, y) {
15 x.location = y; // violation?
16 }
17 function k1() {
18 k(window, ”http://www.evil.com/”);
19 }

As x and window are aliases of one another, the permission x.?
grants write permission for all properties of window and the per-
mission window./ˆ((?!location$).)/ grants write permission for all
properties of window, except location. Hence, the location-based se-
mantics permits writing to window.location in the body of k.

Suffice it to say that the path-based semantics does not trigger a
violation, either. However, there are extensions to both semantics
that grant reliable write protection for window.location. For the
path-based semantics, it requires applying a contract to the window
object at the beginning of the program run before any alias is taken.
Section 6 discusses the required extensions in detail.

We adopt the path-based semantics because it deals satisfacto-
rily with the intended applications, it guarantees stability of vio-
lation, its behavior matches the intuition of the average program-
mer, and it is reasonably efficient. Although single read and write
accesses are more expensive than for the location-based seman-
tics, we believe that the potentially unbounded time for installing a
location-based permission is not amortized by the subsequent ex-
ploration of the object graph: We expect that only a small fragment
of the objects affected by a contract is actually explored.

2.2 Dynamic Extent
An access permission for a function is in force for the
duration of a function activation.

An instance of the permission gets installed at each invocation of
the function and this same instance is withdrawn at the matching
function return.

As a consequence, permissions get refined in a chain of func-
tion calls. Because an access permission expresses the promise that
the contracted function does not exceed its permissions, each addi-
tional function call can only restrict the accessible properties fur-
ther. For example, consider these functions:

20 /∗c ({}) → any with [x.a] ∗/
21 function d1(x) {
22 return x.a; // violation if called from d2
23 }
24 /∗c ({}) → any with [] ∗/
25 function d2(x) {
26 return d1(x);
27 }

The contract of function d2 disallows any access to its argument.
Invoking d2 with any object triggers a violation of d2’s contract
when trying to execute line 22, although this line is in d1, which
has a more permissive contract.

As another consequence, a closure returned from a function
is not restricted by the access permission of the function. For
example, consider the permission of f in this code fragment:

28 /∗c ({}) → (() → any) with [x.b] ∗/
29 function f(x) {
30 return function() { return x.a + x.b; };
31 }
32 function f1() {

3 2011/7/13

33 var r = f({ a: ”secret”, b: ”public” });
34 r();
35 }

Running the function f1 does not violate the contract of f because
the access to x.a happens outside the dynamic extent of the call f(o).

The dynamic extent principle is inspired by the distinction be-
tween direct and latent effects in static effect systems. Evaluation of
the function expression in line 30 does not cause an access to x.a or
x.b. For this reason, a static effect system categorizes this effect as
a latent effect and places it on top of the function arrow in its type.
When the function is applied, the effect is exercised. However, at
that point, there is no contract in force that would restrict the effect.

On the other hand, the following variant of the program frag-
ment leads to a violation.

36 function g(x) {
37 return function() { return x.a + x.b; };
38 }
39 /∗c ({}) → any with [x.b] ∗/
40 function g1(x) {
41 var r = g(x);
42 r(); // violation
43 }

As the invocation of r() happens in the extent of the invocation
of g1, its permission with [x.b] is in force and the violation by
accessing x.a is detected. In contrast, the function g by itself does
not impose any restriction on accesses to x, so that a direct call to g
does not lead to a violation.

Another way to protect a property would be to add latent access
permissions to the language:

44 /∗c ({}) → (() → any with [x.b]) with [x.b] ∗/
45 function j(x) {
46 return function() { return x.a + x.b; };
47 }
48 function j1() {
49 var r = j({ a: ”secret”, b: ”public” });
50 r(); // violation
51 }

Such latent permissions are supported by our implementation, but
they are not available in the syntax.

An alternative design would consider access permissions as
contagious and have closures capture the contracts in force at their
definition site. This design would flag both examples as violations.
We dismissed this alternative because its behavior does not coin-
cide with the static information provided by an effect system and
because of the implementation cost of storing contracts in closures.

2.3 Pre-State Snapshot
An access permission applies to objects and paths in the

heap at the time the contract is installed.

One immediate implication of this principle is that the program
can access and modify newly allocated objects without restriction.
As these objects are not present in the heap snapshot at installation
time (the pre-state), the contract does not apply to them. This
behavior is analogous to the treatment of the assignable clause and
newly allocated objects in JML [32, 38].

We see two alternatives to this design but consider neither vi-
able: choose a different reference heap or choose a different inter-
pretation of access paths.

The only other reference heap for a contract would be the post-
state of a function, that is, the heap at the time the contract is
withdrawn. However, the final heap is not a sensible choice because
the programmer expects the paths in a contract to refer to the
situation at the time a function is invoked. The final heap may
exhibit very different paths.

Another interpretation of access paths might consider the per-
missions as symbolic paths that may be traversed regardless of the
changes in the underlying heap. This interpretation also violates the
programmer’s intuition as the following example shows.

52 /∗c ({}, {}) → any with [x.a, y.a, y.a.b]
53 function b(x, y) {
54 y.a = x.a;
55 y.a.b = 42; // allowed?
56 }

Reading just the contract, a programmer expects that x.a.b does
not change. However, the symbolic interpretation of paths would
not flag the assignment in line 55, which changes x.a.b, counter
to the expectation of the programmer. In contrast, our proposed
interpretation reports a violation.

2.4 Last Writer Wins
The last write operation to a property determines the

access rights for future readers of the property.

This principle could be considered as a consequence of the pre-
state principle. It implies that aliasing created after the installation
of an access contract creates new permitted access paths. Aliasing
created before is not considered.

Here is an example.

57 /∗c ({}) → any with [x.a,x.b.a] ∗/
58 function l(x) {
59 x.a = x.b;
60 x.a.a = 42;
61 }
62 function l1() {
63 var x = { a: {}, b: {}};
64 l(x);
65 }

In this code fragment, line 59 is clearly permitted as x.a may be
assigned to and x.b may be read. The following read access to x.a
in line 60 returns the reference to the object that was accessible
through x.b when the permission was installed. As this object was
first reached via x.b, the access permission for x.b counts so that the
assignment to x.a.a is sanctioned by the path x.b.a. Thus, function
l1() runs without violation!

If we modify the example to create the alias before installing
the permission, then things look different.

66 /∗c ({}) → any with [x.a,x.b.a] ∗/
67 function m(x) {
68 var y = x.a;
69 y.a = 42; // violation
70 }
71 function m1() {
72 var x = { a: {}, b: {}};
73 x.a = x.b;
74 m(x);
75 }

In this case, running m1() yields a violation. While the first read
access to x.a in line 69 is sanctioned by x.a, the write access to
property a of this object is not. Indeed, this behavior is consistent
with invoking m on an object without any aliasing, which reports a
violation under any semantics.4

3. Formalization
A formal semantics of monitoring for access permissions is needed
as basis of an implementation that observes the design principles.

4 The location-based semantics runs both examples, l1 and m1, without
triggering a violation.

4 2011/7/13

variable x ∈ Var
property name p ∈ Prop
access path π ∈ Path = Prop∗

path language L ∈ PLang = ℘(Path)
expression e ::= x | λx.e | e(e)

| new | e.p | e.p := e
| permitx : Lr, Lw in e

Figure 2. Syntax.

For that reason, we define the calculus λAP
obj as a call-by-value

lambda calculus extended with objects and access permissions. For
this calculus, we specify the semantics, including monitoring, and
prove that it adheres to the principles stated in Sec. 2, in particular,
pre-state snapshot and stability of violation.

Let’s fix some notation before we start. Let A and B be sets. We
write ℘(A) for the power set of A, A + B for the disjoint union of
A and B, and A × B for their Cartesian product. A ⇀ B denotes
the set of finite (partial) functions from A to B with ∅ standing
for the empty mapping and if f ∈ A ⇀ B, then f ↓A′ denotes
the restriction of f to domain A′ ⊆ A, dom(f) ⊆ A denotes
the domain of f and ran(f) ⊆ B its range. The updated function
f ′ = f [a 7→ b] is defined by f ′(a) = b and f ′(a′) = f(a′), for
all a′ 6= a. We also write [a 7→ b] = ∅[a 7→ b] for the singleton
map with domain {a}. If we write f(a) as part of a premise, this
use implies the additional premise a ∈ dom(f).

3.1 Syntax
Figure 2 specifies the syntax of λAP

obj. The calculus extends a call-by-
value lambda calculus with object construction (new creates a fresh
object devoid of properties), reading of an object’s property, and
writing/defining an object’s property. The syntax is close to that of
existing JavaScript core languages [23, 25].

The novel construct of the calculus is the access permission
expression permitx : Lr, Lw in e that restricts accesses through
variable x during evaluation of e governed by the two languages Lr

and Lw. Both languages specify a set of access paths (sequences of
properties) starting from the object bound to x (which must be in
scope). Read accesses to descendants of x are limited to paths in
Lr whereas write accesses are limited to paths in Lw. Evaluation
of e stops if it tries to perform any access that is not permitted.

The read language Lr should be prefix closed, because it does
not make sense to permit reading of x.a.b without permitting to
read x.a, too. Similarly, writing to x.a.b is not possible without
reading x.a, first. So, each path in the write language Lw should
extend a path in the read language by one property, that is, Lw ⊆
{π.p | π ∈ Lr, p ∈ Prop}.

Our implementation restricts Lr and Lw to regular languages so
that membership is decidable. Furthermore, contracts with access
permissions can only be attached to functions and a contract can
state multiple permits in one go.

3.2 Semantics
Figure 3 defines the semantic domains and the inference rules for a
big-step evaluation judgment of the form

ρ,R,W ` H; u; e ↪→ H ′; u′; v

This judgment declares that given a variable environment ρ and in-
dexed collections R and W of read and write permissions, the ex-
pression e transforms the initial heap H to the final heap H ′ and re-
turns value v. Furthermore, it threads a time stamp u, u′ ∈ Stamp
that is incremented at each property write operation and at each
permit expression. The permissions R and W are indexed by the
time stamps of the heaps for which the permissions were granted.

Semantic domains
` ∈ Loc infinite set of locations
u ∈ Stamp = Integer

H ∈ Heap = Loc ⇀ Obj
Obj = Prop ⇀ (Stamp ×Val)

P,R,W ∈ Stamp ⇀ PLang
M,N ∈ PMap = Stamp ⇀ Path
(`,M) ∈ Ref = Loc × PMap

v ∈ Val = Ref + (Env × Expr)
ρ ∈ Env = Var ⇀ Val

Checking permissions
CHECK PERMISSION
∀u ∈ dom(P) ∩ dom(M) : M(u) ∈ P(u)

P c̀hk M
Evaluation rules

VAR
ρ,R,W ` H; u; x ↪→ H; u; ρ(x)

LAM

ρ,R,W ` H; u; λx.e ↪→ H; u; (ρ↓FV(λx.e), λx.e)

APP
ρ,R,W ` H; u; e0 ↪→ H ′; u′; (ρ′, λx.e)

ρ,R,W ` H ′; u′; e1 ↪→ H ′′; u′′; v1

ρ′[x 7→ v1],R,W ` H ′′; u′′; e ↪→ H ′′′; u′′′; v

ρ,R,W ` H; u; e0(e1) ↪→ H ′′′; u′′′; v

NEW
` /∈ dom(H)

ρ,R,W ` H; u; new ↪→ H[` 7→ ∅]; u; (`, ∅)

PUT
ρ,R,W ` H; u; e1 ↪→ H ′; u′; (`,M)
ρ,R,W ` H ′; u′; e2 ↪→ H ′′; u′′; v

W c̀hk M.p H ′′′ = H ′′[` 7→ H ′′(`)[p 7→ (u′′, v)]]

ρ,R,W ` H; u; e1.p := e2 ↪→ H ′′′; u′′ + 1; v

GET
ρ,R,W ` H; u; e ↪→ H ′; u′; (`,M) R c̀hk M.p

ρ,R,W ` H; u; e.p ↪→ H ′; u′;M.p < H ′(`)(p)

PERMIT
ρ′,R[u 7→ Lr],W[u 7→ Lw] ` H; u + 1; e ↪→ H ′; u′; v

ρ′ = ρ[x 7→ ρ(x)C [u 7→ ε]]

ρ,R,W ` H; u; permitx : Lr, Lw in e ↪→ H ′; u′; v

Figure 3. Semantics.

The time stamp of a permission uniquely identifies different execu-
tions of permit expressions and determines their relative order with
respect to heap modifications.

A value v ∈ Val is either a reference or a closure consisting
of an environment and a lambda expression. The representation of
a reference is a pair of a heap address ` and a collection M of
access paths, indexed by time stamps. The collectionM records all
permitted access paths that have been traversed during evaluation
so far to obtain this reference value. The indexing is again used
for marking modifications with time stamps. This representation is
dictated by the choice of a path-based semantics (see Sec. 2.1).

A heap maps a location to an object and an object maps a
property name to a pair of a time stamp and a value. The time
stamp indicates the time of the write operation that last assigned the

5 2011/7/13

M′ < (u, v) :=

(
(`′,M′ <u N) if v = (`′,N)

v if v /∈ Ref

(M<u N)(u′) :=8>>><>>>:
N (u′) if u′ ∈ dom(N)

M(u′) if u′ ∈ dom(M)\dom(N) ∧ u < u′

undefined if u′ ∈ dom(M)\dom(N) ∧ u ≥ u′

undefined if u′ /∈ dom(M) ∪ dom(N)

(M.p)(u) :=

(
M(u).p if u ∈ dom(M)

undefined if u /∈ dom(M)

v CM :=

(
(`,N CM) if v = (`,N)

v if v /∈ Ref

(N CM)(u) :=

(
M(u) if u ∈ dom(M)

N (u) if u /∈ dom(M)

Figure 4. Auxiliary definitions.

property. It is required to implement the “last writer wins” principle
from Sec. 2.4.

The evaluation rules VAR, LAM, and APP for variable, lambda ab-
straction, and function application expressions are standard. They
thread the time stamp and propagate the permissionsR andW un-
changed to their sub-evaluations, if any.

The evaluation rule NEW creates a new object in the heap. This
object has no properties and its collection of access paths is empty.
The latter indicates that the newly created object is completely
unrestricted (following Sec. 2.3). Any of its properties may be read
or written. The time stamp does not change when allocating a new
object because no object in the current heap is modified.

The PUT rule specifies the operation that writes and (if neces-
sary) defines a property. It first computes the location ` and the
collection M of access paths of the object and then checks the
write permission to the object with the premise W c̀hk M.p. It
overwrites the object’s property with the new value and assigns it
a new, incremented time stamp to implement the “last writer wins”
principle (Sec. 2.4). Hence, the time stamp of a property is always
the time of its last update.

The rule GET defines the read operation of object properties.
It relies on some auxiliary operations defined in Figure 4. It first
expects e to evaluate to a reference (`,M), which denotes the
base object for the property read. In this reference, ` is the heap
address of the object and M contains a collection of access paths
for the object corresponding to heap traversals reaching this object,
one path for each active access permission. The other premise
R c̀hk M.p checks the read permission for these paths extended
with property p. This check is specified by rule CHECK PERMISSION

which requires that, for each active access permission with time
stamp u, the current access path for u is an element of the set of
permitted access paths for u, i.e., P(u).

If the read operation is permitted, then there are two possibili-
ties. If the property contains a closure, then this closure is the result
of e.p. However, if the property contains an object reference, say
(`′,N), then this read operation has discovered that M.p are also
access paths for object `′. The reference value returned from the
read operation must somehow merge the different ways to reach
`′: via N and via M.p. Computing the desired collection of ac-
cess paths depends on the last time u when the property `.p was
updated. This complication is required to implement the pre-state
snapshot principle (Sec. 2.3).

The operator < in Fig. 4 implements the required merger oper-
ation. Its right-hand argument are the contents of an object’s prop-
erty: (u, v) where u is the time stamp of the last update and v the
stored value. Its left-hand argument is the collection M′ = M.p
of newly discovered paths to the property. If v is not a reference,
< just returns v as already discussed. Otherwise, v = (`′,N) in
which case it returns the location `′ paired with the collection of
paths computed by the operator <u applied to the new paths M′

and the old paths N .
In an application M <u N , the first argument M contains the

access paths that were detected when checking the read access. The
second argument N contains the access paths as they are stored in
the heap at location `′. The subscript u is the time stamp of the
last write to the property. The definition in Figure 4 distinguishes
three cases depending on when the property has been written last
and what access paths were given to the written value. Let u′ be the
time stamp of an execution of a permit expression.

1. The object’s property value already has an access path for index
u′ (in N). Thus, the property has been overwritten after the
installation of u′. In this case, any new access path in M is
ignored. Instead, the existing access path is returned according
to the pre-state snapshot principle (Sec. 2.3) as it reflects an
access path at the time when the permission attached to u′ has
been installed.

2. The object’s property value has no access path for index u′ (in
N) and it had been written before the permission with index u′

has been installed as can be seen from u < u′. In this case, we
attach the new u′-path to the value. This path is realizable in
the pre-state snapshot at time u′ because the property has been
written at u < u′, that is, before u′.

3. There is no access path for index u′ (inN) and the property has
been written after the contract with index u′ has been installed
(viz. u ≥ u′). In this case, no u′-path is attached because this
property was not linked to the data structure in the pre-state
snapshot at time u′.

The examples in Section 3.3 illustrate these three cases.
The rule PERMIT installs an access permission contract. Each

such permission is bound to the time stamp u of the heap in which
the permission is installed. It increments the time stamp to avoid
clashes with the next permission. Then, evaluation proceeds with
the body of the permit-expression, but with an updated variable
binding for x, which records the time stamp u for the heap reach-
able from the object bound to x (if any) by attaching [u 7→ ε] to
it, and updated read and write permissions, which record the stated
permission set Lr and Lw for the object network reachable from x.

An access permission has dynamic extent (Sec. 2.2) because the
access permissions are propagated with the flow of execution and
the rule CHECK PERMISSION only considers the entry points in the
domain of the current access permission P . In particular, access
permission contracts are not captured by closures created while
they are in force: Closure creation (rule LAM) ignores the access
permissions and function application (rule APP) continues to use the
current permissions with the body of the invoked function. Hence,
after evaluation of the body of an access permission is complete, the
information associated with its index u could be garbage collected
both from the value and from the heap.

3.3 Examples
The code fragments in Fig. 5 illustrate the different cases of the <u

operator. The fragments (a) and (b) correspond to the examples l1
and m1 in Sec. 2.4. They differ only in the placement of the permit
expression. The code fragment (a) installs the permission before
creating an alias with the assignment x.a = x.b whereas version

6 2011/7/13

1 let x = new in
2 x.a = new;
3 x.b = new;
4 permit x :
5 {a,b,b.a},{a,b.a} in
6 x.a = x.b;
7 x.a.a = 42

(a) Valid access

1 let x = new in
2 x.a = new;
3 x.b = new;
4 x.a = x.b;
5 permit x :
6 {a,b,b.a},{a,b.a} in
7 x.a.a = 42

(b) Invalid access

1 let x = new in
2 let y = new in
3 x.a = new;
4 permit y : {a}, {a} in
5 permit x : {a}, {a} in
6 x.a = y;
7 x.a.a = 42

(c) Nested permissions

Figure 5. Exercising the definition of <.

PERMIT’
ρ′,R[u 7→ Lr],W[u 7→ Lw],F ′ `′ H; u + 1; e ↪→ H ′; u′; v

ρ′ = ρ[x 7→ ρ(x)C [u 7→ ε]]
F ′ = if ρ(x) = (`,M) then F [u 7→ (`, H)] else F

ρ,R,W,F `′ H; u; permitx : Lr, Lw in e ↪→ H ′; u′; v

Figure 6. Gathering foretime information.

(b) installs the permission afterwards. In both cases, let the permit
expression be associated with time stamp u′.

In fragment (a), the expression x.b in line 6 returns the location
`b paired with the map [u′ 7→ b] (case 2 of <u: u < u′ because it
was generated by the preceding assignment x.b = new). This value
is written to x.a. The following access to x.a returns (`b, [u

′ 7→ b])
according to case 1 of <u which governs that the paths stored in the
object take precedence over the actual path taken. For the final write
access, the extended access map [u′ 7→ b.a] is checked against the
set of write permissions and succeeds.

In fragment (b), x.a = x.b is executed before the permit expres-
sion. Hence, x.a contains (`b, ∅) and the GET rule makes it return
(`b, [u

′ 7→ a]) according to case 1 of <u. For the write operation,
the extended access map [u′ 7→ a.a] is checked against the set of
write permissions and fails.

The code in Figure 5(c) exercises case 3 of the definition of
<u. After establishing the two permissions, the environment ρ is:
[x 7→ (`x, [u3 7→ ε]), y 7→ (`y, [u2 7→ ε])] where the ui are sorted
according to their indexes i. After the assignment x.a = y (with
time stamp u4) the object in location `x is: {a : (u4, (`y, [u2 7→
ε]))}. In line 7, x.a evaluates to

[u3 7→ a] < (u4, (`y, [u2 7→ ε]))
= (`y, [u3 7→ a] <u4 [u2 7→ ε])
= (`y, [u2 7→ ε])

Observe that case 3 of <u applies because u4 ≥ u3. In conse-
quence, u3 vanishes from the domain of the map because the ob-
ject that was reachable via x.a before line 6 has become garbage.
With this reasoning the update of x.a.a is permitted because it is
equivalent to y.a and realizable in the heap after line 5.

3.4 Pre-state Snapshot
The first result is a soundness results that underlines that our seman-
tics adheres to the pre-state snapshot principle (Sec. 2.3). Basically,
we want any value produced during evaluation to contain correct
path information with respect to all relevant pre-states in the follow-

ing sense. Consider a reference value of the form (`,M) whereM
contains a map from time stamps to access paths. Each time stamp
u ∈ dom(M) indicates an installed access permission that affects
this reference value. That is, for each time stamp u ∈ dom(M)
there is an access permission installed at time u for heap Hu with
base object `u. The information contained in M is correct with re-
spect to such u if there is a path from the base object `u to ` along
the properties of M(u) in the pre-state heap Hu.

To formally define this notion, suppose the information about
the pre-states and the base objects of all contract installations is
gathered in a time-stamp indexed foretime map F : Stamp ⇀
(Loc × Heap). It maps the time stamp u of the installation of an
access permission to a pair (`u, Hu), where `u is the location of
the base object and Hu is the heap snapshot at that time.

Definition 3.1 Let F be a foretime map.
A value v is F path consistent if

• v = (ρ, λx.e) and ρ is F path consistent or
• v = (`,M) and, for all u ∈ dom(M), if F(u) = (`u, Hu),

then there is a path from `u to ` along M(u) in Hu.

An environment ρ is F path consistent if, for all x ∈ dom(ρ),
ρ(x) is F path consistent.

A heap H is F path consistent if all values stored in all object
properties are F path consistent. That is, for all ` ∈ dom(H) and
for all p ∈ dom(H(`)), if H(`)(p) = (u, v), then v is F path
consistent.

To gather the foretime map, a suitably extended evaluation judg-
ment ρ,R,W,F `′ H; u; e ↪→ H ′; u′; v is required. It records
the base object and the heap snapshot at each successful contract
installation in the foretime map F . Fig. 6 contains the correspond-
ingly modified PERMIT’ rule. The remaining rules for the extended
judgment extend the ones for the original judgment in Fig. 3 by
passing the foretime map in exactly the same way as R and W .

Showing adherence to the pre-state snapshot principle amounts
to proving that an evaluation that starts on a path consistent heap
and environment produces a path consistent heap and value.

Theorem 3.1 Suppose that ρ,R,W,F `′ H; u; e ↪→ H ′; u′; v.
If ρ and H are F path consistent, then so are H ′ and v.

We also proved an accompanying completeness result that guar-
antees that the M component of a reference value is non-empty if
it has been accessed via a pre-state path.5

3.5 Stability of Violation
Stability of violation is a property linked to the reference attach-
ment principle (Sec. 2.1). It states that a violation of an access per-
mission is preserved (in a precisely defined sense) when performing
the same computation on a heap with more aliasing.

Let’s first fix what we mean with “more aliasing.” If H1 and H2

are heaps, then H2 has more aliasing if it identifies locations that
are distinct in H1 and merges the contents of the objects in these
locations. That is, if o′ and o′′ are distinct objects in H1 which are
merged to object o in H2, then o has all properties from o′ and o′′.
Properties present in o′ and o′′ must have suitably related values
that map into the same value in H2. We call H1 a refinement of H2

because it makes more distinctions between objects.

Definition 3.2 A heap H1 is a γ-refinement of heap H2, written as
H1 <γ H2, if γ : dom(H1) → dom(H2) is a surjective mapping
between heap locations and ∀`1 ∈ dom(H1), o1 = H1(`1),
o2 = H2(γ(`1)):

5 See appendix.

7 2011/7/13

GET-CRASH2
ρ,R,W ` H; u; e ↪→ H ′; u′; (`,M) R 6 c̀hk M.p

ρ,R,W ` H; u; e.p ⇑R

GET-CRASH3
ρ,R,W ` H; u; e ↪→ H ′; u′; (`,M) R c̀hk M.p

ρ,R,W ` H; u; e.p ⇑O

PUT-CRASH3
ρ,R,W ` H; u; e1 ↪→ H ′; u′; (`,M)

ρ,R,W ` H ′; u′; e2 ↪→ H ′′; u′′; v W 6 c̀hk M.p

ρ,R,W ` H; u; e1.p := e2 ⇑W

Figure 7. Essential crashing rules.

RH1 dom(o1) ⊆ dom(o2) (objects in the refined heap have fewer
properties) and

RH2 (∀p ∈ dom(o1)) o1(p) = (u1, v1)∧o2(p) = (u2, v2)∧u1 =
u2 ⇒ v1 <γ v2

A value is a γ-refinement of another, v1 <γ v2 iff

RV1 v1 = (`1,M1) and v2 = (`2,M2) and `2 = γ(`1) and
M1 = M2, or

RV2 v1 = (ρ1, e1) and v2 = (ρ2, e2) and ρ1 <γ ρ2 and e1 = e2.

An environment is a γ-refinement of another, ρ1 <γ ρ2 iff

RE1 dom(ρ1) = dom(ρ2) and
RE2 (∀x ∈ dom(ρ1)) ρ1(x) <γ ρ2(x).

The reader might wonder about the implication in RH2. This
choice allows the coarser heap H2 to contain a value which does
not refine to all corresponding values in heap H1: for each object
in H2, there may be any number of γ-preimages of this object in
H1. RH2 says that such an object need not be consistent with all
its preimages. This case can be detected by the condition u1 < u2:
the shared version of the object has been updated after one of its
unshared preimages. The remaining case u1 > u2 can never arise.

We allow such inconsistencies in a heap refinement because
they only influence the semantics of an program if there is a subse-
quent read operation that observes the inconsistency. In this case,
the criterion u1 < u2 detects the inconsistency.

Having established the notion of heap refinement, it remains to
formalize running the same program on two heaps and compare
the outcomes. To this end, it is not sufficient to consider success-
ful, terminating evaluations, but also evaluations ending in a con-
tract violation and interrupted evaluations. Figure 7 specifies the
key rules of three judgments of the form ρ,R,W ` H; u; e ⇑i

where i ∈ {R, W, O}. Each judgment formalizes an interrupted
evaluation. The superscript R indicates violation of a read permis-
sion (rule GET-CRASH2), superscript W indicates violation of a write
permission (rule PUT-CRASH3), and superscript O indicates non-
deterministically giving up on a read operation (rule GET-CRASH3).
The remaining rules6 are straightforward variants of the evaluation
rules in Fig. 3 that propagate an error condition like an exception.

Our theorem says essentially that crashes due to violated read
or write permissions are preserved when more aliasing is added.
The main complication is that an inconsistent read operation (in the
sense discussed after Definition 3.2) in the version with additional
aliasing may lead to arbitrary behavior of the program, including
non-termination. Therefore, the theorem constructs a related execu-
tion up to the first inconsistent read. Its proof along with auxiliary
definitions may be found in the appendix.

6 See appendix.

J e1[e2] K = pRead(Je1K,Je2K)
J e1[e2] = e3 K = pAssign(Je1K,Je2K,Je3K)
J e(e1,...,en) K = fCall(JeK,[Je1K,...,JenK])
J e.m(e1,...,en) K = mCall(JeK,m,[Je1K,...,JenK])
J new e(e1,...,en) K = cCall(JeK,[Je1K,...,JenK])
J for (var i in e) {s} K = var o=JeK; for (var i in o}) {

if (mCall(o,”hoP”,[i])) {JsK}}
J function f(x,...) {s} K = var f = enableWrapper(

function f’(x,...) {JsK})

Figure 8. Transformation rules (excerpt).

Theorem 3.2 If H1 <γ H2 and ρ1 <γ ρ2 and

ρ1,R,W ` H1; u; e ⇑i (1)

(for i ∈ {R, W}) then

ρ2,R,W ` H2; u; e ⇑j (2)

such that either i = j or j = O and the derivation of (2) ends in
an inconsistent read operation with respect to (1).

Informally, the proof constructs a derivation of (2) from a
derivation of (1). As H1 <γ H2, it is either the case that (2)
always reads the same values from the heap as (1). In this case, the
derivation of (2) is isomorphic to the derivation of (1) and i = j.
Otherwise, there is an instance of a GET rule in the derivation of (1)
such that applying this rule as part of (2) would return a different
value. A sufficient criterion for this case is to check if u1 < u2

when reading the property as shown in RH2. In this case, we give
up, emit a GET-CRASH3 rule instead of GET, and complete the deriva-
tion with propagation rules for ⇑O .

The theorem also holds in a language with conditionals as
they can be simulated in the lambda calculus. If the language
were extended with pointer equality, then a condition might turn
out differently on H2 than on H1. However, Theorem 3.2 would
still hold if a rule analogous to GET-CRASH3 were introduced that
allowed us to derive a ⇑O judgment in (2) instead of executing an
inconsistent pointer equality.

4. Implementation
The implementation of the framework for monitoring access
permissions consists of two parts. The first part is an off-line
JavaScript-to-JavaScript compiler written in OCaml. The second
part is a JavaScript library that handles the dynamic aspects of en-
forcing access permissions. Both are available from our webpage.7

The implementation supports the full JavaScript language ac-
cording to the standard [11]. As in the examples in Sec. 2, con-
tracts can be attached to a function or method in a special kind of
comment /∗c ... ∗/.

The compiler transforms the annotated code such that it moni-
tors access permissions at run time. Figure 8 illustrates some of the
transformation steps in simplified form. All operations that involve
heap accesses, like reading and writing of properties, are redirected
to library functions that dynamically manage access permissions.
These library functions introduce wrappers for references that re-
member the access paths used to reach the wrapped reference.

Figure 9 shows an example of a transformed function defini-
tion. The library function enableWrapper creates a wrapper for f
that generates a fresh time stamp each time a function is called and
marks the parameters with the corresponding access path informa-
tion at run time such that pRead can check if it has permission to
read $1.a. The library call to pRead returns a wrapper with the ac-
cess path $1.a for z. Reading the property b of z uses the access

7 Reference submitted with paper.

8 2011/7/13

/∗∗ (any) → any
with [$1.a.b] ∗/

function f(x) {
var z = x.a;
return z.b;

};

TESTS.c1 = ... // contract
var f = enableWrapper(

function f’(x) {
var z = pRead(x,”a”);
return pRead(z,”b”);

}, [TESTS.c1]);

Figure 9. Example of a transformation.

path stored in the wrapper of z, extends it to $1.a.b, and checks if
reading this path is permitted. The permission is granted because
the access permission attached to f is $1.a.b.

Calls to native or non-transformed code would fail if wrapped
objects were passed. Because it is not possible to statically decide
which function is applied at a call site, the framework strips the
access meta data from parameter objects before passing them to
the function. It stores the meta data on a global stack that is used
to re-wrap the objects if the callee itself is a transformed function.
This approach is compatible with uses of eval, although monitoring
does not extend to eval-generated code.

For interoperability with non-transformed code, it is also nec-
essary to remove wrappers when storing object properties. To this
end, an additional map (infos) is attached to each object. This
map stores the wrappers for each of the properties. The function
pRead uses this map to reconstruct wrapped objects if necessary.

As the library stores the access path information in the infos
property of the objects, this property must not become accessible to
user code. Therefore, we provide a substitute for hasOwnProperty
(hoP) that masks out the infos property. We also transform
the statement for (var i in e) { s } to ensure that internal proper-
ties used by the implementation do not leak out to the program.
Technically, this protection is achieved by changing the body s to
if (hoP(o,i)) { s }. The functions pRead and pAssign also safeguard
the special property infos .

If native code or non-transformed code iterates over all proper-
ties of an object, then it is not possible to hide the infos property.
We are not aware of any way to reliably hide this property short of
modifying the underlying JavaScript engine. However, in the case
studies that we performed the special property caused no problem.

5. Evaluation
How effective are access permissions for detecting programming
errors? To answer this question, we hand-annotated the code of
several libraries and applications with contracts and ran it with
monitoring enabled. We applied random code modifications [7] to
check to what extent the enforcement of access permissions detects
changes in the program’s behavior.

5.1 Case Study: Singly- and Doubly-Linked Lists and Trees
The first case study examines a collection of libraries implement-
ing data structures like singly- and doubly-linked lists and search
trees.8 The code sizes range from 200-400 LOC per library. Be-
cause the results are similar for all libraries, we discuss the results
for the singly-linked list implementation as a representative exam-
ple.

The list interface comprises one constructor for list nodes and
six methods to operate on a list: add, remove, item, size, toArray,
and toString. For each method we developed contracts with access
permissions. Annotating the code and implementing a custom con-
tract to drive the input generation took about one hour. The code
with all contracts is available on our webpage.

8 https://github.com/nzakas/computer-science-in-javascript

type type+effect
fulfilled contracts 1011 18.0 % 711 12.7 %
rejected contracts 4607 82.0 % 4907 87.3 %
reason for rejection (a mutant may be counted multiple times)
type contract failure 2020 43.9 % 1643 33.5 %
signaled error 2034 44.1 % 2136 43.5 %
browser timeout 553 12.0 % 243 5.0 %
read violation - 0.0 % 1018 20.7 %
write violation - 0.0 % 1606 32.7 %
read/write violation - 0.0 % 1842 37.5 %

Table 1. Testing random mutations for singly-linked lists.

From the implementation we derived about 5600 random mu-
tations and tested each mutant against the original contracts. The
mutations affected operators, constants, and variable names. Each
of the six functions was tested with 1000 randomly generated test
cases and was run in two configurations:

type contracts specifying integer lists without effects: only viola-
tions of the type contracts are detected,

type+effect contracts specifying integer lists with effects: type
and access path violations are detected.

Table 1 shows the results of the test runs. The “fulfilled” row
counts mutations that are not detected because the mutant fulfills
all six contracts. The “rejected” row registers mutants that fail
at least one contract. These two rows indicate the effectiveness
of effect monitoring. Adding access permissions to type contracts
improves the detection rate for mutations from 82% to 87.3%, an
improvement of 6.4%. The remaining rows break down the reasons
for the failure of a mutant. As there are multiple functions in a
mutant, there are multiple reasons why a single mutant may fail so
that the percentages do not add to 100%.

We manually inspected the cases where the contract system did
not detect a mutation. In many cases the mutated code is seman-
tically equivalent to the original version, for instance, when x.p
was changed to x.q, where both properties p and q were always
undefined. In other cases, the contract was fulfilled by a mutant be-
cause the modification did not change any property access or return
value from a type perspective, for instance, return true is changed
to return false. While these mutations changed the semantics, a type
or access permission contract cannot detect such changes.

We also manually inspected ten randomly selected mutants that
timed out. In all cases, the mutation caused an infinite loop.

5.2 Case Study: Richards and Deltablue Benchmarks
A second case study was performed on the Richards and Deltablue
benchmarks from the Google V8 benchmark suite. The Richards
benchmark9 simulates the task dispatcher of an operating system.
The code comprises 29 functions in 650 LOC. A person without
prior knowledge of the code under test provided the contracts and
implemented custom generators in about four hours. It took another
two hours to develop the access permissions.

Table 3 shows the result of testing about 2950 mutated versions.
These test runs executed 50 tests per function for each mutant to test
effect and contract violations. We chose to run a smaller number of
tests to reduce the overall run time and to check if a small number
of test cases is sufficient to obtain a high detection rate of mutants.

For this application, adding access permissions increased the
detection rate from 61.1% to 69.2%, which amounts to a 13%
improvement. This increase is quite surprising as the percentages

9 http://v8.googlecode.com/svn/data/benchmarks/v6/
richards.js

9 2011/7/13

https://github.com/nzakas/computer-science-in-javascript
http://v8.googlecode.com/svn/data/benchmarks/v6/richards.js
http://v8.googlecode.com/svn/data/benchmarks/v6/richards.js

type type + effect
fulfilled contracts 1148 38.9% 911 30.8%
rejected contracts 1807 61.1% 2044 69.2%
reason for rejection (a mutant may be counted multiple times)
type contract failure 872 48.3% 866 42.4%
signaled error 1052 58.2% 1037 50.7%
browser timeout 28 1.5% 30 1.5%
read violation 0 0.0% 202 9.9%
write violation 0 0.0% 149 7.4%
read/write violation 0 0.0% 349 17.1%

Table 2. Testing random mutations of the Richards case study.

of detected read or write violations are much smaller than in the
linked-list case study.

In the Deltablue application (59 contracts in 670 LOC), another
case study from the V8 benchmark suite, the access permissions led
to an increase in error detection from 75.6% to 84.2%, an improve-
ment by 11.4%. In contrast to the other case studies, Deltablue does
not permit unit testing on a per function basis as it relies heavily on
global state. Further details may be found in the appendix.

5.3 Performance Evaluation
All case studies and benchmarks were executed on a Lenovo
Thinkpad X61s notebook with a Core 2 Duo processor with
1.60 GHz and 2GB Ram running the Google-Chrome browser
(7.0.517.44) on top of Linux version 2.6.35-23-generic. In this
setting, a test run of a mutant is about four times slower with mon-
itoring enabled than without monitoring (in both case studies).

To give ballpark numbers, running 1000 tests for each of the
six functions of the linked-list test suite takes about 6 seconds
with monitoring compared to 1.5 seconds without. For Richards,
running 50 tests for each of the 29 functions takes 1.85 seconds
with monitoring compared to 0.5 seconds without.

For the Richards benchmark we timed the original code (with-
out mutation) once with monitoring and once without to measure
the slowdown for code that never violates the effect annotations.
This experiment masks out the effects of contract violations, which
cause the program to stop earlier on faulty mutants than on correct
code. However, the slowdown is similar: running 1000 test cases
for each of the 29 functions took 32.4 seconds with monitoring en-
abled versus 7.4 seconds without, a slowdown factor of 4.4.

6. Application to Security
A typical attacker model for JavaScript considers untrustworthy
code that is loaded at run time to enhance one’s program with some
sought-after functionality. The lack of a proper module system or
encapsulation mechanism in JavaScript means that the attacker’s
code can arbitrarily explore and modify any accessible object.
This freedom is undesirable because the code may leak or change
sensitive information contained in some of the objects, for example,
the browser history, session cookies, the currently displayed page,
inputs into a web form, and so on.

Access permission contracts with the path-based semantics can
ensure that certain parts of the object graph are never accessed after
extending the monitoring framework as follows: When starting
a script, an implicit permission is installed for the roots of all
sensitive information. Typically, we would install the permission
window.∗, which enables read and write access to all transitive
properties of the window object. Effectively, this permission covers
all objects accessible to a JavaScript program.

The novelty of the extension is that the installation of this
permission returns a handle, say window handle, that allows us

to later restrict the permission by removing access paths from it.
For example, we would invoke an untrusted function through a
permission wrapper like the following to keep it from changing the
location property of the window object.

/∗c () → any with [...] except [window handle.location] ∗/
function untrusted wrapper() {

untrusted();
}

This way, a program can explicitly manage the trust invested in a
foreign code fragment.

The installation of such an exception would still take constant
time, as the implementation only needs to enter the exception into
the permission map for window handle. Also the cost of checking a
permission remains linear in the number of installed permissions.

In the formal system, the permit expression would change to
permitx as y : Lr, Lw in e where the execution additionally
binds y to the time stamp under which the permission for x is
installed. A new expression restrict y : Lr, Lw in e removes
the permissions Lr and Lw fromR(u) andW(u) when y is bound
to u. Details may be found in the appendix.

Our implementation already supports the except clause with
a slightly different semantics, but it does not provide permission
handles, yet. We are currently working on this addition as a proof
of concept, but in the long run we aim for a browser-based imple-
mentation. The transformation-based implementation is sufficient
for the applications related to program understanding and testing,
but for the security application, the implementation must take place
inside the browser. A browser-based implementation is less brittle
than a transformation-based implementation, it imposes less run-
time overhead on the program execution, and it is able to fully deal
with the dynamicity of JavaScript, in particular with the frequent
uses of eval and with the dynamic loading of parts of the program
in various ways.

Extending the location-based semantics for security applica-
tions also requires the introduction of an except clause. Processing
such a clause would give rise to yet another traversal of the object
graph, but this time removing permissions rather than joining them.

7. Related Work
Access permissions are closely related to effect systems. Effect sys-
tems have been conceived for functional languages [19] to describe
and infer the scope of side effects, with the goal of detecting paral-
lelizable code fragments and improving memory management.

There are too many papers on effect systems to do them all jus-
tice here. Greenhouse and Boyland [22] introduce effect annota-
tions for Java which closely resemble our contracts. In contrast to
our system, effects are collected for regions which comprise a set
of objects. Their approach aims to track data dependencies of soft-
ware components. The main differences to our work are that most
effect systems are integrated in type systems and thus geared to-
wards static analysis (whereas ours performs dynamic analysis) and
that our prime motivation lies in the detection of software defects.

Interestingly, the effect system proposed by Bocchino and
coworkers [28] for deterministic parallel Java relies on a very sim-
ilar notion of effect, based on paths over regions (sets of instance
variables). They use the effect system to statically prove the ab-
sence of data races. Our system might be extended to check this
property at run time.

Similarly related is work on ownership and aliasing control.
Again, with the exception of the dynamic ownership system of
Boyland and coworkers [6], most ownership systems statically im-
pose tree-like ownership structures on object graphs [3, 10, 39,
45]. The main difference to ownership types is that our system is
entirely access path-based whereas ownership types are context-

10 2011/7/13

based. Furthermore, some ownership systems forbid the mere exis-
tence of references, whereas access permissions forbid the traversal
of certain paths. Effective ownership [33] does not restrict referenc-
ing of objects, but enforces the encapsulation of an object’s repre-
sentation by confining modifications to the owner.

Bierhoff and Aldrich [5] define a static checker for access per-
missions in Java. It combines typestate and object aliasing infor-
mation to design and verify protocols for safe object access. They
also focus on the correct usage of single resources. Their access
permissions are statically verified.

Deutsch’s [8] analysis for sharing and aliasing is also entirely
based on access paths. It is a static analysis phrased as an abstract
interpretation of a storeless semantics.

Run-time monitoring is an approach to providing safety and se-
curity guarantees. Erlingsson [13] provides an overview of such
applications. As a notable difference, security monitoring is mostly
geared towards eliminating (sequences of) uses of undesired oper-
ations and can often be implemented by finite automata, whereas
access path monitoring rules out undesired accesses and requires
more specific implementation techniques to deal with aliasing.

BrowserShield [40] provides run-time monitoring of JavaScript.
BrowserShield rewrites code to redirect critical operations accord-
ing to user-specified policies. The Google Caja project [20] em-
ploys an online compilation process of JavaScript code to a safe
subset named Cajita which enforces certain security policies.

Maffeis and coworkers [34] combine several isolation tech-
niques for restricting heap accesses of third-party code. They disal-
low eval, function, and constructor within untrusted code and also
rewrite property accesses with wrappers to enable run-time checks.

These systems operate within the browser during interactive
user sessions and provide complete interposition. In contrast, our
tool is focused on development and testing of applications.

Finifter and coworkers [18] design a JavaScript heap analysis
framework to detect information leaks. To prevent exploits, third-
party code is restricted to a name space by prefixing properties
with a unique identifier. In contrast, we restrict accesses via path
conditions.

ConScript [37] enforces fine-grained application-specific secu-
rity policies at run time by a modified JavaScript execution engine.
Compared to our approach, they have different goals and less over-
head, but are tied to a particular browser implementation.

Further related research deals with dynamic contract checking.
Findler and Felleisen [16] develop a dynamically checked type
contracts for Scheme. In a similar way, JSConTest [24] extends
JavaScript with type contracts that are monitored dynamically and
can be used to automatically generate random test cases for con-
tracted functions. Our paper extends their work with access per-
missions to check side effects of a contracted function.

Program specification frameworks like Spec# [4] or Eiffel [12]
permit the formulation of access permissions as FOL-formulas in
Hoare-style pre- and postconditions. Because specialized syntax is
missing, the annotation process is rather heavy-weight. Besides,
these frameworks are geared towards full specifications, whereas
we are targeting partial specifications.

JML [31] features an assignable clause to specify which ob-
ject fields may be modified during a method call, similar to our
write permissions (read accesses cannot be restricted). In contrast
to our work, JML is mostly geared towards (static) program veri-
fication. Of the approaches that employ JML for run-time checks
(that is, contract monitoring) only a few fully support assignable.
Lehner and Müller [32] provide such an implementation of run-
time checks. Their implementation relies on code rewriting, but the
main contribution of their work is to efficiently check assignable
clauses for dynamic data groups. The semantics of these checks is
reminiscent of the location-based semantics discussed in Sec. 1.3.

Spoto and Poll [41] define a static analysis for object-local
assignable specifications. They include alias information in their
system by tracking what aliases are introduced when a field is
modified. Their analysis also seems to implement the location-
based semantics.

8. Conclusion
We proposed a novel extension of software contracts with access
permissions that specify the side effects of an operation in terms of
access paths. We implemented monitoring for access permissions
in JavaScript by a program transformation and demonstrated that
this implementation has an acceptable overhead. As a basis of the
implementation, we developed a formalization that enabled us to
cleanly specify the interaction of monitoring and aliasing, to prove
soundness of monitoring, and to prove stability of violation.

Our case studies showed that the specification of contracts with
access permissions on an unfamiliar code base takes about 30-
40 minutes per 100 LOC and that in return the number of bugs
detected by contract monitoring increases between 6% and 13%,
which is a remarkable improvement on type contracts. In each case,
the access permissions provided valuable insights in the behavior
of the program. Hence, access permissions could be a worthwhile
extension of testing frameworks.

8.1 Effect Inference
For program understanding and regression testing, it is advanta-
geous to automatically infer access permission contracts as their
manual construction can be tiresome and error prone. To this end,
we defined and implemented a heuristic algorithm[26] which infers
access permissions from the set of access paths that are collected
during several test runs. Our experiments (which include the code
discussed in Sec. 5.1 and 5.2) showed that effect contracts of high
precision can be inferred with only minimal manual interaction. We
take this result as additional evidence that access permission con-
tracts can play an important role in automatic regression testing.

8.2 Future Work
In future work, we want to pursue various directions. We believe
that our approach is more widely applicable to any object-based
language, not just to scripting languages, but also to nominally
typed languages like Java and C#. In the latter cases, to avoid
breaking encapsulation, it is likely necessary to introduce a concept
like regions or datagroups analogous to other work in this area [22,
28, 31]. In this context, it would also be interesting to investigate
a mix of static checking and dynamic enforcement as in work on
manifest contracts [21].

Another obvious extension would be a special treatment for
effects on the DOM [30]. Because DOM structures are guaranteed
to be trees (no aliasing!), many of the complications of general
object graphs do not arise in the case of DOM structures.

The extensions to reliably support the security application out-
lined in Sec. 6 seem very promising. We are currently working on a
browser-based implementation of access permission monitoring to
further validate this application.

References
[1] P. Abercrombie and M. Karaorman. jContractor: Design by contract

for Java. http://jcontractor.sourceforge.net/, 2003.
[2] A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for all.

In Proc. 38th ACM Symp. POPL, pages 201–214, Austin, USA, Jan.
2011. ACM Press.

[3] J. Aldrich and C. Chambers. Ownership domains: Separating aliasing
policy from mechanism. In M. Odersky, editor, 18th ECOOP, volume
3086 of LNCS, pages 1–25, Oslo, Norway, June 2004. Springer.

11 2011/7/13

http://jcontractor.sourceforge.net/

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming
System: An Overview. In CASSIS 2004: Construction and Analysis of
Safe, Secure and Interoperable Smart devices, pages 49–69. Springer,
2004.

[5] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased ob-
jects. In Proc. 22nd ACM Conf. OOPSLA, pages 301–320, Montreal,
QC, CA, 2007. ACM Press, New York.

[6] J. Boyland, J. Noble, and W. Retert. Capabilities for sharing: A
generalisation of uniqueness and read-only. In ECOOP ’01: Proc.
15th European Conference on Object-Oriented Programming, pages
2–27, London, UK, 2001. Springer-Verlag.

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11:34–41,
April 1978.

[8] A. Deutsch. A storeless model of aliasing and its abstractions us-
ing finite representations of right-regular equivalence relations. In
Proc. IEEE International Conference on Computer Languages 1992,
pages 2–13, Oakland, CA, Apr. 1992. IEEE.

[9] T. D’Hondt, editor. 24th ECOOP, volume 6183 of LNCS, Maribor,
Slovenia, 2010. Springer.

[10] W. Dietl and P. Müller. Universes: Lightweight ownership for JML.
Journal of Object Technology (JOT), 4(8):5–32, Oct. 2005.

[11] ECMAScript Language Specification, Dec. 2009. ECMA Interna-
tional, ECMA-262, 5th edition.

[12] Eiffel: Analysis, design and programming language, June 2006.
ECMA International, ECMA-367, 2nd edition.

[13] Ú. Erlingsson and F. B. Schneider. SASI enforcement of security
policies: A retrospective. In Proceedings of the 1999 New Security
Paradigms Workshop, Caledon Hills, Ontario, Canada, Sept. 1999.

[14] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract lan-
guages. In S. Y. Shin, S. Ossowski, M. Schumacher, M. J. Palakal,
and C.-C. Hung, editors, SAC, pages 2103–2110, Sierre, Switzerland,
2010. ACM.

[15] R. B. Findler and M. Felleisen. Contract soundness for object-oriented
languages. In Proc. 16th ACM Conf. OOPSLA, pages 1–15, Tampa
Bay, FL, USA, 2001. ACM Press, New York.

[16] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In S. Peyton-Jones, editor, Proc. ICFP 2002, pages 48–59, Pittsburgh,
PA, USA, Oct. 2002. ACM Press, New York.

[17] R. B. Findler, S. Guo, and A. Rogers. Lazy contract checking for
immutable data structures. In O. Chitil, Z. Horváth, and V. Zsók, ed-
itors, Implementation and Application of Functional Languages, 19th
International Workshop, IFL 2007, number 5083 in Lecture Notes in
Computer Science, pages 111–128. Springer, 2008.

[18] M. Finifter, J. Weinberger, and A. Barth. Preventing Capability Leaks
in Secure JavaScript Subsets. In Proceedings of Network and Dis-
tributed System Security Symposium, pages 375–388. Internet Society,
2010.

[19] D. Gifford and J. Lucassen. Integrating functional and imperative
programming. In Proc. 1986 ACM Conf. on Lisp and Functional
Programming, pages 28–38, 1986.

[20] google-caja: A source-to-source translator for securing JavaScript-
based web content. http://code.google.com/p/google-caja/.

[21] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest.
In J. Palsberg, editor, Proc. 37th ACM Symp. POPL, pages 353–364,
Madrid, Spain, Jan. 2010. ACM Press.

[22] A. Greenhouse and J. Boyland. An object-oriented effects system.
In R. Guerraoui, editor, 13th ECOOP, volume 1628 of LNCS, pages
205–229, Lisbon, Portugal, June 1999. Springer.

[23] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript.
In D’Hondt [9].

[24] P. Heidegger and P. Thiemann. Contract-driven testing of JavaScript
code. In Proceedings of the 48th International Conference on Objects,
Models, Components, Patterns, TOOLS’10, pages 154–172, Malaga,
Spain, June 2010. Springer.

[25] P. Heidegger and P. Thiemann. Recency types for analyzing scripting
languages. In D’Hondt [9].

[26] P. Heidegger and P. Thiemann. A heuristic approach for computing ef-
fects. In Proceedings of the 49th International Conference on Objects,
Models, Components, Patterns, TOOLS’11, Zurich, Switzerland, June
2011. Springer. to appear, draft available at: http://proglang.
informatik.uni-freiburg.de/jscontest/.

[27] R. Hinze, J. Jeuring, and A. Löh. Typed contracts for functional
programming. In P. Wadler and M. Hagiya, editors, Proceedings of
the 8th International Symposium on Functional and Logic Program-
ming FLOPS 2006, pages 208–225, Fuji Susono, Japan, Apr. 2006.
Springer.

[28] R. L. B. Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komu-
ravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A type
and effect system for deterministic parallel Java. In S. Arora and G. T.
Leavens, editors, Proc. 24th ACM Conf. OOPSLA, pages 97–116, Or-
lando, Florida, USA, 2009. ACM Press, New York.

[29] R. Kramer. iContract — the Java design by contract tool. In Proceed-
ings of the Technology of Object-Oriented Languages and Systems,
pages 295–307, Santa Barbara, CA, USA, 1998.

[30] P. Le Hégaret, R. Whitmer, and L. Wood. W3C document object
model. http://www.w3.org/DOM/, Aug. 2003.

[31] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A Notation for
Detailed Design. In H. Kilov, B. Rumpe, and I. Simmonds, editors,
Behavioral Specifications of Businesses and Systems, pages 175–188.
Kluwer, 1999.

[32] H. Lehner and P. Müller. Efficient runtime assertion checking
of assignable clauses with datagroups. In D. S. Rosenblum and
G. Taentzer, editors, FASE, volume 6013 of Lecture Notes in Com-
puter Science, pages 338–352. Springer, 2010.

[33] Y. Lu and J. Potter. Protecting representation with effect encapsula-
tion. In S. Peyton Jones, editor, Proc. 33rd ACM Symp. POPL, pages
359–371, New York, NY, USA, Jan. 2006. ACM.

[34] S. Maffeis, J. C. Mitchell, and A. Taly. Isolating JavaScript with filters,
rewriting, and wrappers. In ESORICS’09: Proceedings of the 14th
European Conference on Research in Computer Security, pages 505–
522, Saint-Malo, France, 2009. Springer-Verlag.

[35] B. Meyer. Applying “Design by Contract”. IEEE Computer,
25(10):40–51, Oct. 1992.

[36] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd
edition, 1997.

[37] L. A. Meyerovich and B. Livshits. ConScript: Specifying and enforc-
ing fine-grained security policies for Javascript in the browser. In IEEE
Symposium on Security and Privacy, May 2010.

[38] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular specifi-
cation of frame properties in JML. Concurrency and Computation:
Practice and Experience, 15(2):117–154, 2003.

[39] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul,
editor, ECOOP, volume 1445 of LNCS, pages 158–185, Brussels,
Belgium, July 1998. Springer.

[40] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir.
BrowserShield: Vulnerability-driven filtering of dynamic HTML.
ACM Trans. Web, 1(3):11, 2007.

[41] F. Spoto and E. Poll. Static Analysis of JML’s assignable Clauses. In-
ternational Workshop on Foundations of Object-Oriented Languages,
Jan. 2003.

[42] J.-P. Talpin and P. Jouvelot. The type and effect discipline. Information
and Computation, 111(2):245–296, 1994.

[43] P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In
Proc. 18th ESOP, volume 5502 of LNCS, pages 1–16, York, UK, Mar.
2009. Springer-Verlag.

[44] D. N. Xu, S. Peyton Jones, and K. Claessen. Static contract checking
for Haskell. In B. Pierce, editor, Proc. 36th ACM Symp. POPL, pages
41–52, Savannah, GA, USA, Jan. 2009. ACM Press.

12 2011/7/13

http://code.google.com/p/google-caja/
http://proglang.informatik.uni-freiburg.de/jscontest/
http://proglang.informatik.uni-freiburg.de/jscontest/
http://www.w3.org/DOM/

[45] T. Zhao, J. Palsberg, and J. Vitek. Lightweight confinement for
Featherweight Java. In Proc. 18th ACM Conf. OOPSLA, pages 135–
148, Anaheim, CA, USA, 2003. ACM Press, New York.

A. Location-Based Semantics
The idea of the location-based semantics is to assign read or write
permissions to the properties of a set of locations that is determined
by a particular access permission. To do that safely requires a
partial traversal of the object graph for the installation of each
access permission.

This section contains the outline of an implementation that re-
quires two main data structures and that relies on the instrumenta-
tion of all operations that affect the heap: creation of new objects,
reading a property, and writing a property. It simplifies matters by
assuming that each permission is represented by a finite set of clas-
sified access paths. To fully deal with the path notation from Sec. 1
and 2 introduces further problems in connection with cyclic object
graphs. In particular, it might be necessary to implement the ∗ op-
erator in permissions using backtracking.

Both of the two data structures are stacks. They have one entry
for each currently installed access permission. The top entry con-
tains the information for the most recently installed permission.

newlocs : Stack of (Set of Location)

The top entry contains the newly allocated locations since the last
active permission was installed. All stack entries are disjoint.

The rationale for this data structure is that newly allocated
locations are not governed by previously installed permissions.
Therefore, the program is free to read and write to their properties.

type Permission = {None, Readable, Writable}
ordered by None < Readable < Writable

permissions : Stack of
(Map from (Location x Property) to Permission)

The top entry contains the currently active permissions. The map
on top of the stack is always less permissive than the map below
on the intersection of the domains of the two maps. The map on
top never contains locations in top(newlocs). The default value in a
map is None.

These definitions are sufficient to define the instrumentation
of the code. The notation store[l][p] addresses the object store at
location l and property p.

// replacement for read operation
function read (l : Location, p : Property) {

if (getPermission (l, p) >= Readable) {
return store[l][p];

} else {
throw ReadViolation;

}
}
// replacement for write operation
function write (l : Location, p : Property, x : Any) {

if (getPermission (l, p) >= Writable) {
store[l][p] = x;

} else {
throw WriteViolation;

}
}
// replacement for new
function new() {

l = some location not in dom(store);
store[l] = empty object;
top (newlocs) = top (newlocs) + {l};

}

Computing the access permission amounts to first checking if
the location is new, in which case reading and writing is permitted,
and then look it up in the permissions stack.

function getPermission (l : Location, p : Property) {
if (l in top (newlocs)) {

return Writable;
} else {

return top (permissions) (l, p);
}

}

The remaining procedures implement the installation of a per-
mission contract as shown in Sec. 1 and 2. It contains the extensions
for path exceptions as mentioned in Sec. 6.

For simplicity, a permission is expressed as a base object loca-
tion and a set of paths, where the internal steps of a path imply read
permission and the final step implies write permission.

function installPermission (
permissionsToGrant : List of (Location x (Set of Path)),
permissionsToRevoke : List of (Location x (Set of Path))) {

newPerm = new EmptyPermission();
for ((l, P) in permissionsToGrant) {

permitPaths (newPerm, l, P);
}
for ((l, P) in permissionsToRevoke) {

forbidPaths (newPerm, l, P);
}
push (permissions, newPerm);

}

Uninstalling a permission (i.e., leaving its extent) happens in
two steps. First, the most recently installed permissions/restrictions
are withdrawn. Second, the newly allocated locations are joined.

function uninstallPermission () {
pop (permission);
newLocationsSinceInstallation = top (newlocs);
pop (newlocs);
top (newlocs) =

union (top (newlocs), newLocationsSinceInstallation);
}

Defining new read and write permissions refines the existing
permissions. Accesses that were forbidden before cannot be al-
lowed by installing a new permission. Essentially, we traverse the
object graph starting from the base object. This pseudocode does
not address cycles in object graphs, which presents further chal-
lenges.

// install a set of permissions P on location l
function permitPaths (newPerm, l, P) {

for (path in P) {
permitSinglePath (newPerm, l, path);

}
}
// pattern matching on path
function permitSinglePath (newPerm, l, path) {

if (path is empty) {
return;

} else if (path is single property p) {
// grant write permission if property was Writable before
newPerm (l, p) = join (newPerm (l, p), getPermission (l, p));

} else {
path has the form p . path’;
if (getPermission (l, p) != None) {

newPerm (l, p) = join (newPerm (l, p), Readable);
permitSinglePath (newPerm, store[l][p], path’);

}
}

}

13 2011/7/13

Installing new exceptions is analogous to installing permis-
sions. It must be applied after granting permissions as shown in
installPermission. When processing an exception, only the last step
of a path is forbidden.

// remove a set of permissions P on location l
function forbidPaths (newPerm, l, P) {

for (path in P) {
forbidSinglePath (newPerm, l, path);

}
}
// pattern matching on path
function forbidSinglePath (newPerm, l, path) {

if (path is empty) {
return;

} else if (path is single property p) {
newPerm (l, p) = None;

} else {
path has the form p . path’;
// ignore existing permission for (l,p) because
// there may be a different way to get to the
// end of this path (via some alias)
forbidSinglePath (newPerm, store[l][p], path’);

}
}

B. Further Examples
B.1 Introduction
An access contract explicitly states the set of paths (sequences of
property accesses) that a method may access from the objects in
scope. Being able to state such contracts is important in a language
like JavaScript, where a side effect is the raison d’être of many
operations. To support this claim, consider the following code:

function redirectTo (url) {
window.location = url;

}

The type-signature contract (string) → undefined would be suitable
for redirect, stating that the argument must be a string and that the
undefined result value should be returned.10 However, the interest-
ing information about the function is that it changes the location
property of the window object, which has the further effect of redi-
recting the web browser to a new page. To specify this effect, our
extended contract language enables us to extend the above contract
with an access permission:

... with [window.location]

This extended contract allows the function to access and modify the
location property of window but denies access to any other object.
Contract monitoring for such a contract enforces the permission at
run time. For example, if the function’s implementation above were
replaced by

function redirectTo (url) {
window.location = url;
myhistory.push (url);

}

while keeping the same type signature and access permission, then
monitoring would report a contract violation as soon as the function
accesses the data structure myhistory.

B.2 Modular Layout Computation
Suppose you are a JavaScript developer who has just been assigned
a maintenance task on a large AJAX application. In particular, you

10 undefined is a special value in JavaScript. Methods without an explicit
return statement return undefined.

need to work on the code that performs a layout computation for
a bunch of view objects. To start with, it would be advantageous
to know which properties are modified by the code. Using our
framework, a developer can gradually specify access contracts for
the code until it runs without contract violation on a sufficiently
large number of test cases. For example, the final specification may
be as follows:

/∗c {}.(int, int) → boolean with [this.x, this.y, this.w, this.h] ∗/
Frame.prototype.layout = function (width, height) { ... }

The special comment /∗c ... ∗/ specifies a contract for a method.
The part before with defines the type signature. In the subsequent
access permission, this refers to the receiver object of the method
call. The access paths specify that only properties named x,y, w, or
h of the receiver object may be written.

An access path starts with any variable name in scope followed
by a sequence of property names. It permits reading any property
reachable by dereferencing some prefix of the access path and
writing the properties reachable by dereferencing the entire access
path. The special variable names this, $1, $2, . . . refer to the receiver
object of a method call and to the first, second, and so on parameter.
They are synonymous to the respective parameter name.

B.3 Read-only Objects
Many libraries rely on a programming pattern to define JavaScript
functions with keyword parameters. The idea is to define a function
with one parameter which is always an object. The properties of this
object play the role of keyword parameters as in this example:

c = createCanvas({width: 100, height: 200, background: ”green”});

As it is generally considered bad programming style to assign to
parameters, this parameter object should not be changed, either.
Such changes could be forbidden with a contract:

/∗c ({}) → undefined with [$1.∗.@] ∗/

This specification uses two new features in the access permission:
as in name patterns for file access in a shell, the ∗ stands for any
sequence of property names. The final @ stands for the empty set
of property names. Thus, the first parameter must be read-only.
Read permission is granted for all properties reachable from $1,
but write permission is granted only for those access paths that end
in a property name that is contained in the empty set, that is, for no
access path.

B.4 Observer
In an implementation of the observer pattern, the programmer
would like to make sure that an observer only reads and writes
properties below the state component of the subject. This restric-
tion may be expressed with the contract

/∗c ({}) → any with [$1.state.∗.?] ∗/
Observer.prototype.update = function (subject) {

... subject.state.value = ...
}

With this access permission, any property below state is readable
and writable but state itself is read-only. The final ? stands for any
property name.

B.5 Regular Expression Permissions
Let’s return to the example from the introduction, where we
wanted to ensure that a method only accesses and modifies the
window.location property. In the context of enforcement of secu-
rity properties, it is more likely that we want to forbid access to a
few chosen properties, whereas we do not care about accesses to
the majority of properties. In such a situation, we might write an
access permission like the following:

14 2011/7/13

... with [window./ˆ((?!status$).)/]

It specifies an access path that accepts read and write accesses
only to properties of the window object that match the regular
expression enclosed in slashes. The particular regular expression
in the example matches all property names different from status.
Often, such cases are easier to express with our syntax for revoking
permissions, as in

... with [window.?] except [window.status,window.location]

which forbids accessing the status and location properties. Revoca-
tion is only possible for permissions granted in the same contract.

C. Syntax and Semantics of Effects
The implementation requires access permissions to be specified
using the path notation informally introduced in Sec. B. We first
present a formalization of this notation, which we then connect to
the actual syntax used in the implementation.

Figure 10 presents the formal syntax of access permissions. An
access permission classifies access paths π, which are sequences
of property names. Access paths are classified as read paths, write
paths, or negative paths by writing R(π), W(π), or N(π). An
access permission is built from path permissions with set union
and difference operators. A path permission b is either empty, a
path step P followed by a permission, or an iterated path step P
followed by a permission. P can be an arbitrary set of property
names.

Figure 11 defines the semantics of access permissions with
inference rules for the judgment κ ≺ a, which indicates that the
classified path κ matches permission a. Essentially, a single path
step P in a permission is matched by a corresponding property p ∈
P in the path. An iterated path step P∗ is matched by a sequence of
properties from P in the path. The three axioms on top of Fig. 11
implement the different treatment of the three kinds of path. A
write path must be matched exactly by the permission, a read path
may match any prefix of the permission, and a negative path only
requires that a path prefix is matched by the permission. The latter
choice is required for the implementation of the difference operator
a1 − a2, where the second premise asks for N(π) 6≺ a2, that
is, there should be no derivation of N(π) ≺ a2. This definition
enforces that the read language is prefix closed as well as the
connection between the write and read languages mentioned in
Sec. 3.1.

Turning to the concrete syntax, an access permission for a vari-
able x has the following general form:

with [x.w1,. . .,x.wn] except [x.e1,. . .,x.em] (3)

Translated to the formal syntax defined in Figure 10, this permis-
sion reads as follows:

a = (w1 + . . . + wn)− e1 − . . .− em .

The access permission (3) corresponds to the language Lr = {π |
R(π) ≺ a} of permitted read paths and the language Lw = {π |
W(π) ≺ a} of permitted write paths for the variable x. Hence,
adding a contract with an effect annotation to a function as in (3)
is equivalent to surrounding the function body e with the permit
expression permit x : Lr, Lw in e.

As in the formal syntax, paths of arbitrary length can be spec-
ified using the ∗ operator. For example, an access permission for
x, x.next, x.next.next, . . . for the elements of a list is written as
x.next∗. The wildcard property ? stands for the set of all property
names. If the operator ∗ is used without a preceding property name,
then it stands for ?∗, specifying a sequence of arbitrary property
names.

A property set can be specified in several ways. An identifier (as
in x.test) or a string literal (x.”foo.bar”) specify singleton sets, with

p ∈ Prop property names
π ::= ε | p.π access paths
γ ::= R | W | N access classifiers
κ ::= γ(π) classified access path
P ⊆ Prop set of property names
b ::= ε | P.b | P ∗ .b path permissions
a ::= ∅ | b | a + a | a− a access permissions
? = Prop, @ = ∅ ⊆ Prop, ∗.b = ?∗.b

Figure 10. Syntax of access paths and access permissions.

W(ε) ≺ ε R(ε) ≺ b N(π) ≺ ε
γ(π) ≺ b p ∈ P

γ(p.π) ≺ P.b

γ(π) ≺ b

γ(π) ≺ P ∗ .b

γ(π) ≺ P ∗ .b p ∈ P

γ(π.p) ≺ P ∗ .b

κ ≺ a1

κ ≺ a1 + a2

κ ≺ a2

κ ≺ a1 + a2

γ(π) ≺ a1 N(π) 6≺ a2

γ(π) ≺ a1 − a2

(∀κ ∈ K) κ ≺ a

K ≺ a

Figure 11. Matching paths with access permissions.

the string notation allowing special characters (like .) in property
names. A regular expression (x./left|right/) specifies the set of
properties that match the expression.

The implementation supports two further extensions. Regular
expressions may also be used on the access path level (/x(.(left|right))∗.data/).
Further, it is possible to register a JavaScript callback to describe
the path language in terms of JavaScript code. For example, the
function f is called to test membership of a path in the language if
the permission is js:f.

D. Case Study: Deltablue Benchmark
For a final case study, we tested the Deltablue benchmark which
is also taken from the V8 benchmark suite.11 It implements a
constraint-solving algorithm for a hierarchy of objects. As a par-
ticularity, the constraint model is built by side-effects from con-
structors. The code implements 59 functions in 670 LOC. A per-
son without prior knowledge of the code under test provided the
contracts and implemented custom generators in about 4 hours.
Here, the major complication was in reengineering the object hi-
erarchies. The access permissions were automatically inferred and
added within seconds.

Table 3 shows the result of testing about 830 mutated versions.
In contrast to case studies so far, it is not possible to run unit tests
for single functions or methods as the application heavily relies on
global variables for storing state. Further, the major computations
are triggered in the constructors of the different constraints. To test
the application, we therefore utilized the actual benchmark applica-
tion which consists of several test cases. The table also contains the
number of exceptions that were triggered by the applications due to
failed invariants in the constraint solver’s internal state.

The type of the main function is /∗c undefined → undefined ∗/.
Hence it did not lead to any type contract error.

11 http://v8.googlecode.com/svn/data/benchmarks/v6/
deltablue.js

15 2011/7/13

http://v8.googlecode.com/svn/data/benchmarks/v6/deltablue.js
http://v8.googlecode.com/svn/data/benchmarks/v6/deltablue.js

type type + effect
fulfilled contracts 176 21.3% 102 12.3%
rejected contracts 626 75.6% 697 84.2%
reason for rejection
signaled error 505 61.0% 469 56.6%
browser timeout 26 3.2% 29 3.5%
app exception 121 14.6% 73 8.8%
read violation 0 0.0% 135 16.3%
write violation 0 0.0% 20 2.4%

Table 3. Testing random mutations of the Richards case study.

For this application, adding access permissions increased the
detection rate from 75.6% to 84.2%, which amounts to a 11.37%
improvement.

E. Pre-State Snapshot

Proof: (Theorem 3.1) By induction on the derivation.
The only rule requiring non-trivial reasoning is GET. By induc-

tion, we can assume that H ′ and (l,M) contain correct path infor-
mation. We now have to show that the override operation creates a
new correct value. Without loss of generalization, we can assume
that the heap contains a reference, since otherwise the override op-
eration is trivial. Hence, it holds that H ′(l)(p) = (u, (`′,N)), and
the result of the heap lookup is

(`′,M.p <u N)

For a given arbitrary fixed time stamp u′ there are now two
cases:

• u′ ∈ dom(N): In this case, the override operation picks the
path from N . This path is valid by induction.

• u′ /∈ dom(N): If u < u′, the conclusion is trivial as M was
path consistent. We do not need to consider the case u ≥ u′,
because in this case the map would not be defined and the
precondition of the theorem would not hold.

�

Theorem 3.1 states the correctness of the path information, but
does not yield the completeness of the gathered path information.

However, it is easy to see that the system does not drop any
path information. The only rule that removes paths from the system
is the third case of the override operation. Due to the condition
for the third case (the time stamp u is not smaller that u′) we
can conclude that this case only arises if the property was written
after the installation of the permit operation corresponding to the
timestamp u. This write operation has stored a value inside the
heap which was coupled with valid path information. If the value
was reachable with respect to the heap with time stamp u, this path
information is stored in the heap (and the first case of the override
operation would trigger). The value stored in the heap by the write
operation was not reachable in the heap with time stamp u. Thus,
it is safe to remove the path from the map. For a more formal
approach to completeness see Sec. G.

F. Stability of Violation
To prove Theorem 3.2, we first formulate a helping theorem.

Theorem F.1 If H1 <γ H2 and ρ1 <γ ρ2 and

ρ1,R,W ` H1; u; e ↪→ H ′
1; u

′
1; v

′
1 (4)

then either

ρ2,R,W ` H2; u; e ↪→ H ′
2; u

′
2; v

′
2 (5)

such that there exists γ′ extending γ where H1 <γ′ H2 and
u′

1 = u′
2 and v′

1 <γ′ v′
2 or

ρ2,R,W ` H2; u; e ⇑O (6)

such that the derivation of (6) ends in an inconsistent read opera-
tion with respect to (4).

Proof: (Theorem F.1) By induction on the derivation of ρ1,R,W `
H1; u; e ↪→ H ′

1; u
′
1; v

′
1.

Case VAR, e ≡ x:
ρ1,R,W ` H1; u; x ↪→ H1; u; ρ1(x)
ρ2,R,W ` H2; u; x ↪→ H2; u; ρ2(x)
Since ρ1 <γ ρ2, it holds that ρ1(x) <γ ρ2(x).
Case LAM, e ≡ λx.e′:
ρ1,R,W ` H1; u; λx.e′ ↪→ H1; u; (ρ1 ↓FV(λx.e′), λx.e′)
ρ2,R,W ` H2; u; λx.e′ ↪→ H2; u; (ρ2 ↓FV(λx.e′), λx.e′)
Since ρ1 <γ ρ2, it holds that ρ1 ↓X<γ ρ2 ↓X , for any set X

of variables.
Case APP, e ≡ e0(e1):
ρ1,R,W ` H1; u; e0(e1) ↪→ H ′′′

1 ; u′′′
1 ; v1 because

ρ1,R,W ` H1; u; e0 ↪→ H ′
1; u

′; (ρ′
1, λx.e′) (7)

ρ1,R,W ` H ′
1; u

′; e1 ↪→ H ′′
1 ; u′′; v′

1 (8)

ρ′
1[x 7→ v′

1],R,W ` H ′′
1 ; u′′; e′ ↪→ H ′′′

1 ; u′′′; v1 (9)

By induction on (7), we obtain that either e0 crashes on H2

(which would make the whole application crash) or
ρ2,R,W ` H2; u; e0 ↪→ H ′

2; u
′; (ρ′

2, λx.e′)
where, for some extension γ′ of γ, H ′

1 <γ′ H ′
2 and ρ′

1 <γ′ ρ′
2.

By induction on (8), we obtain that either e1 crashes on H ′
2

(which would make the whole application crash) or
ρ2,R,W ` H ′

2; u
′; e1 ↪→ H ′′

2 ; u′′; v′
2

where, for some extension γ′′ of γ′, H ′′
1 <γ′′ H ′′

2 and v′
1 <γ′′

v′
2.

By induction on (9), we obtain that either e′ crashes on H ′′
2

(which would make the whole application crash) or
ρ′
2[x 7→ v′

2],R,W ` H ′′
2 ; u′′; e′ ↪→ H ′′′

2 ; u′′′; v2

where, for some extension γ′′′ of γ′′, H ′′′
1 <γ′′′ H ′′′

2 and
v1 <γ′′′ v2.

Hence, rule APP yields
ρ2,R,W ` H2; u; e0(e1) ↪→ H ′′′

2 ; u′′′; v2

where, for some extension γ′′′ of γ, H ′′′
1 <γ′′′ H ′′′

2 and
v1 <γ′′′ v2.

Case NEW, e ≡ new:
ρ1,R,W ` H1; u; new ↪→ H1[`1 7→ ∅]; u; (`1, ∅) where

`1 /∈ dom(H1)
Clearly, there exists `2 /∈ dom(H2) so that NEW is applicable to

H2 yielding
ρ2,R,W ` H2; u; new ↪→ H2[`2 7→ ∅]; u; (`2, ∅)
As γ′ = γ[`1 7→ `2] is an extension of γ it follows that

H1[`1 7→ ∅] <γ′ H2[`2 7→ ∅] and (`1, ∅) <γ′ (`2, ∅).
Case GET, e ≡ e′.p:
ρ1,R,W ` H1; u; e′.p ↪→ H ′

1; u
′; v′

1

because

ρ1,R,W ` H1; u; e′ ↪→ H ′
1; u

′; (`1,M1) (10)
R c̀hk M1.p (11)

where v′
1 = M1.p < H ′

1(`1)(p)
Induction on (10) yields that either e′ crashes on H2 (making

the whole evaluation crash via GET-CRASH1) or

16 2011/7/13

APP-CRASH1
ρ,R,W ` H; u; e0 ⇑i

ρ,R,W ` H; u; e0(e1) ⇑i

APP-CRASH2
ρ,R,W ` H; u; e0 ↪→ H ′; u′; (ρ′, λx.e) ρ,R,W ` H ′; u′; e1 ⇑i

ρ,R,W ` H; u; e0(e1) ⇑i

APP-CRASH3
ρ,R,W ` H; u; e0 ↪→ H ′; u′; (ρ′, λx.e) ρ,R,W ` H ′; u′; e1 ↪→ H ′′; u′′; v1 ρ′[x 7→ v1],R,W ` H ′′; u′′; e ⇑i

ρ,R,W ` H; u; e0(e1) ⇑i

GET-CRASH1
ρ,R,W ` H; u; e ⇑i

ρ,R,W ` H; u; e.p ⇑i

GET-CRASH2
ρ,R,W ` H; u; e ↪→ H ′; u′; (`,M) R 6 c̀hk M.p

ρ,R,W ` H; u; e.p ⇑R

GET-CRASH3
ρ,R,W ` H; u; e ↪→ H ′; u′; (`,M) R c̀hk M.p

ρ,R,W ` H; u; e.p ⇑O

PUT-CRASH1
ρ,R,W ` H; u; e1 ⇑i

ρ,R,W ` H; u; e1.p := e2 ⇑i

PUT-CRASH2
ρ,R,W ` H; u; e1 ↪→ H ′; u′; (`,M) ρ,R,W ` H ′; u′; e2 ⇑i

ρ,R,W ` H; u; e1.p := e2 ⇑i

PUT-CRASH3
ρ,R,W ` H; u; e1 ↪→ H ′; u′; (`,M) ρ,R,W ` H ′; u′; e2 ↪→ H ′′; u′′; v W 6 c̀hk M.p

ρ,R,W ` H; u; e1.p := e2 ⇑W

PERMIT-CRASH

ρ[x 7→ ρ(x)C [u 7→ ε]],R[u 7→ Lr],W[u 7→ Lw] ` H; u + 1; e ⇑i

ρ,R,W ` H; u; permitx : Lr, Lw in e ⇑i

Figure 12. Crashing and partial computations.

ρ2,R,W ` H2; u; e′ ↪→ H ′
2; u

′; (`2,M2)
where H ′

1 <γ′ H ′
2 and (`1,M1) <γ′ (`2,M2) for some γ′

extending γ.
That means `2 = γ′(`1) and M1 = M2. The latter implies

with (11) that
R c̀hk M2.p
and it remains to consider v′

2 = M2.p < H ′
2(`2)(p).

Let (u1, v1) = H ′
1(`1)(p) and (u2, v2) = H ′

2(`2)(p).
If u1 = u2, then H ′

1 <γ′ H ′
2 implies v1 <γ′ v2 which further

implies v′
1 = M1.p < (u1, v1) <γ′ v′

2 = M2.p < (u2, v2).
If u1 < u2, then this read operation is inconsistent with respect

to H1 <γ H2 and we choose the non-deterministic error exit by
continuing the derivation with rule GET-CRASH3.

Case PUT, e ≡:
ρ1,R,W ` H1; u; e′1.p := e′2 ↪→ H ′′′

1 ; u′′′; v′
1 because

ρ1,R,W ` H1; u; e′1 ↪→ H ′
1; u

′; (`1,M1) (12)

ρ1,R,W ` H ′
1; u

′; e′2 ↪→ H ′′
1 ; u′′; v′

1 (13)
W c̀hk M1.p (14)

H ′′′
1 = H ′′

1 [`1 7→ H ′′
1 (`2)[p 7→ (u′′, v′

1)]] (15)

u′′′ = u′′ + 1 (16)

By induction on (12), we have that either ρ2,R,W ` H2; u; e′1 ⇑i

or
ρ2,R,W ` H2; u; e′1 ↪→ H ′

2; u
′, (`2,M2)

such that H ′
1 <γ′ H ′

2 and `2 = γ′(`1), for some extension γ′

of γ.
In the latter case, we continue by induction on (13). We have

that either ρ2,R,W ` H ′
2; u

′; e′2 ⇑ or ρ2,R,W ` H ′
2; u

′; e′2 ↪→
H ′′

2 ; u′′; v′
2

such that H ′′
1 <γ′ H ′′

2 and `2 = γ′(`1), for some extension γ′

of γ.
In the latter case, W c̀hk M2.p because M1 = M2 and it

remains to show that

H ′′
1 [`1 7→ H ′′

1 (`1)[p 7→ (u′′, v′
1)]]

<γ′H ′′
2 [`2 7→ H ′′

2 (`2)[p 7→ (u′′, v′
2)]]

which is clear from the definition: we are overwriting one property
in one object in a way that the time stamps are identical and with
related values.

Hence, rule PUT is applicable to complete the derivation.
Case PERMIT, e ≡ permitx : Lr, Lw in e′:
Given that ρ1,R,W ` H1; u; permitx : Lr, Lw in e′ ↪→

H ′
1; u

′; v′
1 it must be that

ρ′
1,R[u 7→ Lr],W[u 7→ Lw] ` H1; u + 1; e′ ↪→ H ′

1; u
′; v1

(17)

ρ′
1 = ρ1[x 7→ ρ1(x)C [u 7→ ε]] (18)

By induction on (17), it must be that either
ρ′
2,R[u 7→ Lr],W[u 7→ Lw] ` H2; u+1; e′ ⇑i, in which case

the whole expression crashes by rule PERMIT-CRASH, or
ρ′
2,R[u 7→ Lr],W[u 7→ Lw] ` H2; u + 1; e′ ↪→ H ′

2; u
′; v2

where H ′
1 <γ′ H ′

2 and v1 <γ′ v2 for some γ′ extending γ. �

Proof: (Theorem 3.2) By induction on the derivation of
ρ1,R,W ` H1; u; e ⇑i

The proof relies on Theorem F.1 to handle all non-crashing
subcomputations. Hence, the induction only handles the crashing
rules in Fig. 12.

17 2011/7/13

It is interesting to observe that the ⇑O outcome only arises due
to subcomputations that did not crash in H1. So they are only
generated by invocations of Theorem F.1, not by cases handled
directly in this proof.

Case APP-CRASH1, e ≡ e0(e1):
Immediate by appeal to the induction hypothesis.
Case APP-CRASH2, e ≡ e0(e1):
By inversion of rule APP-CRASH2, we obtain

ρ1,R,W ` H1; u; e0 ↪→ H ′
1; u

′; (ρ′
1, λx.e′) (19)

ρ1,R,W ` H ′
1; u

′; e1 ⇑i (20)

By Theorem F.1 applied to (19), we obtain either
ρ2,R,W ` H2; u; e0 ⇑O , in which case we complete the

derivation with rule APP-CRASH1, or
ρ2,R,W ` H2; u; e0 ↪→ H ′

2; u
′; (ρ′

2, λx.e′)
where H ′

1 <γ′ H ′
2 and ρ′

1 <γ′ ρ′
2 for some γ′ extending γ.

Thus, we can apply induction to (20) to obtain
ρ1,R,W ` H ′

1; u
′; e1 ⇑j

with the stated relation between i and j. Applying APP-CRASH2
completes the derivation.

Case APP-CRASH3, e ≡ e0(e1):
Analogous to case APP-CRASH2.
Case GET-CRASH1, e ≡ e′.p:
Analogous to case APP-CRASH1.
Case GET-CRASH2, e ≡ e′.p:
By inversion, we obtain

ρ1,R,W ` H1; u; e′ ↪→ H ′
1; u

′; (`1,M1) (21)
R 6 c̀hk M1.p (22)

As in previous cases, either
ρ2,R,W ` H2; u; e′ ⇑j (which gets propagated) or
ρ2,R,W ` H2; u; e′ ↪→ H ′

2; u
′; (`2,M2)

where H ′
1 <γ′ H ′

2 and ρ′
1 <γ′ ρ′

2 and `2 = γ′(`1) and
M1 = M2 for some γ′ extending γ.

Hence, R 6 c̀hk M2.p and an application of GET-CRASH2 con-
cludes the derivation.

Case GET-CRASH3: is not applicable.
Cases PUT-CRASH1, PUT-CRASH2, PUT-CRASH3, PERMIT-CRASH:

Analogous to previous cases. �

G. Tracing Soundness
This section does not have a corresponding part in the paper. But
the facts we prove here are interesting on its own.

The result underlines that our semantics adheres to the pre-
state snapshot principle (Sec. 2.3). Informally, suppose an access
contract is attached to a variable holding a reference ` to some
object. Then we want to make sure that if an object at `′ is accessed
via this variable without triggering a violation, then there is a path
sanctioned by the contract from ` to `′ in the pre-state of the
contract installation.

To formulate a precise statement, we extend the evaluation
judgment to trace all read and write accesses in sets T r, T w ⊆
Loc × Prop:

ρ,R,W ` H; u; e ↪→′ H ′; u′; v [T r, T w]

Figure 13 shows the modified rules for property read and write; the
remaining rules just union the trace sets from the subcomputations
as shown in the PUT’ rule.

We further need to refer to all heap locations reachable from
a given object location. This notion is formalized with a mapping
reach : Heap × Val ⇀ ℘(Loc), which returns the set of locations
that are reachable from an input value v by dereferencing along any
path π ∈ Path , using the auxiliary function ⇓ (see Figure 14). This
function is heavily overloaded, but it just distributes the work. The

GET’
ρ,R,W ` H; u; e ↪→′ H ′; u′; (`,M) [T r, T w]

R c̀hk M.p v′ = M.p < H ′(`)(p)

ρ,R,W ` H; u; e.p ↪→′ H ′; u′; v′ [T r ∪ {(`, p)}, T w]

PUT’
ρ,R,W ` H; u; e1 ↪→′ H ′; u′; (`,M) [T r

1 , T w
1]

ρ,R,W ` H ′; u′; e2 ↪→′ H ′′; u′′; v [T r
2 , T w

2]
W c̀hk M.p H ′′′ = H ′′[` 7→ H ′′(`)[p 7→ (u′′, v)]]

ρ,R,W ` H; u; e1.p := e2

↪→′ H ′′′; u′′ + 1; v [T r
1 ∪ T r

2 , T w
1 ∪ T w

2 ∪ {(`, p)}]

Figure 13. Tracing property read and write.

reach(H, {v1, . . . , vn}) =
S

i reach(H, vi)

reach(H, v) = ⇓(H, v,Path)

acc(H, v, Π) =
S
{acc(H, v, π) | π ∈ Π}

acc(H, (`,M), π.p) = {(`′, p) | `′ ∈ ⇓′(H, `, π)}
acc(H, v, π) = ∅ if v /∈ Ref

⇓(H, v, Π) =
S
{⇓(H, v, π) | π ∈ Π}

⇓(H, (u, v), π) = ⇓(H, v, π)

⇓(H, v, π) =

(
⇓′(H, `, π) v = (`,M)

∅ v /∈ Ref

⇓′(H, `, ε) = {`}

⇓′(H, `, p.π) =

(
⇓(H, H(`)(p), π) p ∈ dom(H(`))

∅ otherwise

Figure 14. Heap traversal.

first case accepts a set of paths and unions the results of each path.
The second case accepts the result of a property read, a pair of a
time stamp u and a value v, and returns the result for the value.
The third case returns ∅ if the value is not a reference. Otherwise,
it leaves the actual dereferencing to function ⇓′. The function ⇓′

is driven by its path argument. If the path is empty, it returns the
object reached. Otherwise, it dereferences the first step in the path
continuing with ⇓, case 2.

The acc function yields pairs of locations and property names
for all accessible properties along a path π ∈ Π. These pairs
express “last steps” (`′, p) in an access path π.p: `′ is the object
reachable by path π and p is the property to be accessed. The first
equation extends the function to sets of paths by joining the results
on individual paths. The second equation deals with a reference
value by dereferencing all steps of a path except the last one and
pairing the resulting location with the last step of the path. The
third equation handles a non-reference value.

The following theorem states the essence of the pre-state snap-
shot principle. To avoid excessive formal machinery, the statement
is formulated in a setting where the variable to which the contract
is attached refers to a part of the heap that is not reachable from
other parts of the heap.

Theorem G.1 Suppose that ρ,R,W ` H0; permitx : Lr, Lw in e ↪→′

H1; v [T r, T w] and that reach(H0, ρ(FV(e)\{x}))∩X = ∅where
X = reach(H0, ρ(x)).

Then T r ∩ (X ×Prop) ⊆ acc(H0, ρ(x), Lr) and T w ∩ (X ×
Prop) ⊆ acc(H0, ρ(x), Lw).

18 2011/7/13

The second assumption just says that x does not share with the
remaining variables. The conclusion of the theorem says that for
every access pair (`, p) ∈ Tr where ` happens to be reachable from
ρ(x) this access must be sanctioned by the language Lr of read
permissions. The latter is formalized via the acc function: it splits
every access path in Lr in a prefix π and last property p, computes
the dereferenced locations from ρ(x) along path π, and pairs the
results (at most one) with p.

The theorem clearly implies that accesses or modifications to
newly allocated objects are not checked by the access contract.

To prove this theorem, we establish an invariant, which we for-
mulate for the judgment without the traces because they are not
needed to prove it. The assumption ρ,R,W ` H0; ux; permitx :
Lr, Lw in e ↪→ H1; u1; v in the theorem can only hold (by inver-
sion) if its premise also holds:

ρ′,R[ux 7→ Lr],W[ux 7→ Lw] ` H0; ux + 1; e ↪→ H1; u1; v
(23)

where ρ′ = ρ[x 7→ ρ(x) C [ux 7→ ε]]. Let’s further assume that
ρ(x) = (`x, mx) ∈ Ref — otherwise, the theorem is trivially true
because v /∈ Ref ⇒ ⇓(H0, v, π) = ∅, for all π, so that X = ∅.

Definition G.1 A value v is primarily reachable (short: p.r.) from
`x with index ux in H0 if either

• v = (`,M) with ux ∈ dom(M) implies that ` ∈ ⇓′(H0, `x,M(ux)),
• v = (ρ, λy.e′) with ρ primarily reachable, or
• v ∈ Int .

An environment ρ is p.r. if (∀y ∈ dom(ρ)) ρ(y) is p.r. A heap H is
p.r. if ∀` ∈ dom(H) and ∀p ∈ dom(H(`)) H(`)(p) p.r. (All with
respect to the same fixed `x, ux, and H0.)

Lemma G.1 For each judgment ρ′,R′,W ′ ` H ′; u′; e′ ↪→
H ′′; u′′; v′′ occurring in the derivation of (23) it holds that: if
ρ′ and H ′ are p.r. from `x with index ux in H0, then so are H ′′

and v′′.

Proof: By induction on the derivation. Each case refers to the
variables used in the respective rule in Figure 3.

Case VAR: obviously true.
Case LAM: obviously true.
Case APP: By the assumption on ρ and H , induction on e0 yields

H ′ and ρ′ p.r. As now ρ and H ′ are p.r., induction yields that H ′′

and v1 p.r. As ρ′[x 7→ v1] and H ′′ are p.r., induction yields H ′′′

and v p.r., which proves the result.
Case NEW: The heap H[` 7→ ∅] and the value (`, ∅) are both p.r.
Case GET: By induction, H ′ and (`,M) are p.r. But that means,

if ux ∈ dom(M) then ` ∈ ⇓′(H0, `x,M(ux)). It remains to
show that M.p < H ′(`)(p) is p.r. The only interesting case occurs
if H ′(`)(p) = (u, (`′,N)), in which case the returned value is
M.p < (u, (`′,N)) = (`′,M.p <u N).

If ux ∈ dom(N), then the heap location has changed its content
since the access permission associated with ux and it has been
overwritten with a value reachable in H0 from `x on path N (ux).
This path annotation has to stay in force to ensure p.r. of the
result: (M.p <u N)(ux) = (N)(ux), for which p.r. holds by the
inductive assumption.

If ux /∈ dom(N), then the contents of the heap location has
not yet been reached from `x. There are two cases, which can be
distinguished by comparing u and ux. If u ≤ ux, then the heap
location has not changed since H0 and the result can be marked as
visited. This is expressed by (M.p <u N)(ux) = (M.p)(ux) =
M(ux).p. By the property read that happens in this rule, it is clear
that `′ ∈ ⇓′(H0, `x,M(ux).p).

If, however, u > ux, then the heap location has changed since
H0, but the new value has not been reachable from `x in H0. For
that reason, the value must not receive a ux annotation. This is
expressed by (M.p <u N)(ux) =undefined.

Case PUT: by induction H ′ and (`,M) are p.r. Hence, H ′′ and v
are also p.r. by induction. So is the final heap as the rule overwrites
a value with a p.r. value.

Case PERMIT: immediate by induction. �

Towards the proof of Theorem G.1, which is by induction on
the evaluation judgment with traces, we observe that the top-level
judgment “seeds” the lemma in a non-trivial way. The environment
ρ[x 7→ ρ(x) C [ux 7→ ε]] is p.r. with respect to ux, `x, and H0

(from (23)) because `x ∈ ⇓′(H0, `x, ε) and no other environment
entry refers to ux. Similarly, the heap H0 is p.r. because does not
contain any reference to ux. Thus, the lemma tells us that H1 and
v are also p.r.

19 2011/7/13

