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Abstract: We investigate spatial acceleration structures within collision handling in scenarios with ”worst-case” spatial
layout. These are scenarios where lots of collisions and interactions persist over large time intervals. We
focus on acceleration structures based on uniform grids and assess their efficiency in construction, update and
query. Z-curves as a technique for the mapping of spatial locality to uniform grids are analyzed to improve
the cache-hit rate. Approximate solutions based on the grid representation are considered and discussed in
the context of time-critical collision handling. The findings are applied to a deformable collision framework.
Experiments are performed on scenarios that are typical for medical simulators. They often exhibit the ”worst
case” spatial layout mentioned above.

1 INTRODUCTION

Collision handling and the computation of the dynam-
ics are commonly the two main tasks in physically-
based animations. While the computation time for
the dynamics is generally constant, it can significantly
vary for the collision handling dependent on the spa-
tial configuration of the environment. This is due to
the fact that spatial acceleration structures are em-
ployed. They reduce the search space for collisions
to pairs of primitives that are in the same spatial parti-
tion. On the other hand, the collision handling can get
rather expensive in application scenarios where lots
of collisions persist over large time intervals, e. g. the
mesh representations of organs in medical simulations
are in constant interaction with each other.

Various solutions exist to reduce the compu-
tational work in such cases. One is to keep
the candidates for intersection tests to a minimum
by optimizing the spatial partitioning or by im-
proved culling (Tang et al., 2008). On the other
hand, the construction, update and query perfor-
mance of the spatial acceleration structures could
be improved. Time-critical collision handling is
a research topic that is concerned with time con-
straints at the expense of accuracy (Hubbard, 1996).

With respect to dynamics simulations, an approx-
imate collision handling might still yield visually
plausible results (O’Sullivan and Dingliana, 2001;
Gissler et al., 2009). We focus on the research areas
of efficient data structures, parallel algorithms and ap-
proximate techniques.

Regarding the spatial partitioning schemes,
they can be classified into two main cate-
gories, hierarchical approaches and uniform
grids. A large body of research has developed
hierarchical approaches such as bounding vol-
ume hierarchies (BVH) (Cohen et al., 1995;
Hubbard, 1996; Klosowski et al., 1998), BSP-trees
and kD-trees (Samet and Webber, 1988). Recently,
parallel versions of these approaches have been
proposed, either for the execution on multi-core
CPUs (Lauterbach et al., 2006; Tang et al., 2009),
GPUs or both (Kim et al., 2009).

We are concerned with deformable animation
and this poses some challenges on BVHs specif-
ically with respect to the construction and update
of the hierarchies (Kockara et al., 2007). Therefore,
faster refitting approaches have been proposed, e. g.,
in (Larsson and Akenine-Moeller, 2001). However,
in general, BSP trees, octrees or kD-trees are object-
dependent. In contrast, spatial subdivision based



on uniform grids is object-independent. Therefore,
they are particularly interesting for deformable ob-
jects (Teschner et al., 2005).

We investigate algorithms based on
uniform grids, in particular spatial hash-
ing (Teschner. et al., 2003; Alcantara et al., 2009)
and compact grids (Kalojanov and Slusallek, 2009;
Lagae and Dutré, 2008). Within this special focus,
we analyze the performance of sequential algorithms,
how they translate to parallel versions and discuss the
special properties of parallelizable data structures.
The update of the data structures is of specific interest
in the described simulation scenarios with lots of
close and persistent proximities and contacts.

Our contribution: We investigate parallel data struc-
tures based on uniform grids in terms of efficient con-
struction, update and query. We discuss various repre-
sentations of uniform grids and their particular prop-
erties. We describe Z-curves as a technique for the
mapping of spatial locality to uniform grids and ana-
lyze their impact on the cache-hit rate. Regarding the
index sorting approach, we analyze various sorting al-
gorithms. Approximate solutions regarding the colli-
sion query are considered and discussed. The findings
are applied in the collision handling step, i. e. in both
collision detection and collision response, of a de-
formable collision framework. Experiments are per-
formed on scenarios from medical simulators. They
are specifically challenging because of their spatial
layout, i. e., the simulated objects are in constant in-
teraction with each other.

2 RELATED WORK

The problem of collision detection has been
extensively studied in the areas of computer
graphics, simulation, computational geometry
and robotics. For excellent surveys, we refer the
reader to (Lin and Manocha, 2003; Ericson, 2004;
Teschner et al., 2005; Fares and Hammam, 2005;
Kockara et al., 2007). A comprehensive survey on
the underlying search methods and data structures
can be found in (Bentley and Friedman, 1979). In
this section, we focus on the discussion of approaches
based on uniform grids.

The projection technique could be considered as
a precursor to grids. It sorts a sequence of values
according to a key. For example, points in a k-
dimensional coordinate frame can be projected onto
each coordinate. The k lists that represent the projec-
tions can then be obtained by using a standard sort-
ing algorithm k times (Bentley and Friedman, 1979).

(Friedman et al., 1975) used this technique to solve
the nearest neighbor problem. Therefore, intervals
within the lists that are overlapped by a query rect-
angle are determined.

Uniform grids discretize the projections into
cells and the keys are assigned to the respective
cell. (Levinthal, 1966) first applied grids to three-
dimensional range queries. Recent research on uni-
form grids considers the memory requirements and
parallelization techniques. (Lagae and Dutré, 2008)
propose a compact representation of uniform grids
and discuss its application in GPU-based ray tracing.
In (Kalojanov and Slusallek, 2009), efficient parallel
grid construction is considered in the context of ray
tracing. They propose an algorithm for which the per-
formance does not depend on the primitive distribu-
tion, because the construction problem is reduced to
sorting pairs of primitives and cell indices.

In (Rabin, 1976), hash maps are proposed for a
compact representation of a three-dimensional grid.
Many hashing techniques have been proposed such
as perfect hashing (Fredman et al., 1984), multiple-
choice perfect hashing (Pagh and Rodler, 2004)
or combinations of both (Alcantara et al., 2009).
In (Teschner. et al., 2003), an optimized spatial
hashing technique for the collision detection of
deformable objects is proposed.

Space-filling curves (SFC) feature the ability
to preserve spatial locality of an initial domain.
In (Griebel and Zumbusch, 1998), SFCs as a method
of ordering sparse rectangular grids were introduced.
An efficient computation of the Lebesgue space filling
curve is proposed in (Pascucci and Frank, 2001). We
propose to employ SFCs for the computation of the
cell index to increase the efficiency of the discussed
collision handling approaches.

3 CONTEXT

We consider the problem of collision handling within
a deformable modeling framework and its application
to medical simulators. In our framework, objects are
represented by tetrahedral meshes. In the collision de-
tection step, we search for point-in-volume collisions
to find intersecting objects at discrete time steps, like,
e. g., in (Teschner. et al., 2003). In the collision re-
sponse step, forces are computed to resolve the colli-
sions. We employ a penalty-based response scheme
that relates the magnitude of the response force of a
collided point to its penetration depth. The penetra-
tion depth can be estimated consistently for each point
using (Heidelberger et al., 2004). This approach re-
quires the computation of intersection points based on



edge-triangle intersection tests. An adjacency struc-
ture is used to determine those edges within the mesh
that connect a colliding with a non-colliding point.

The point-in-volume test and the edge-triangle in-
tersection test are accelerated by a spatial accelera-
tion structure based on uniform grids. Apart from
the primitive tests, the update of the grids is the main
computational task in the collision handling. The par-
allel construction and query of some spatial accel-
eration structures is not always straightforward, but
they are the most crucial steps in the parallelization of
the collision handling. Furthermore, as we consider
scenes with many close proximities and high spatial
and temporal coherence, the acceleration structures
should exploit these properties. We discuss the cho-
sen uniform grid structures in more detail in the next
section.

4 SPATIAL DATA STRUCTURES

In this section, we describe various spatial data struc-
tures based on uniform grids. We briefly summa-
rize the properties of a basic uniform grid. We then
specify the extension to a compact grid structure with
its benefits in memory requirements and update effi-
ciency. Finally, we discuss spatial hashing to further
reduce the memory requirements. All algorithms are
designed to allow an efficient parallelization by avoid-
ing race conditions.

4.1 Uniform grid

A uniform grid partitions the simulation domain into
regular grid cells of size d. If the domain is bounded
by an axis-aligned bounding box (AABB) with emin

and emax being its minimum and maximum extent, the
grid cells can be stored in an array of size sx ∗ sy ∗ sz

and s = (sx,sy,sz) =
⌈
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Each cell has to store references to all the primi-

tives that overlap the cell. Usually, the references are
stored in either linked lists or dynamic arrays. Using
dynamic arrays requires more memory, but improves
the locality of the references.

4.2 Compact grid

A solution that requires low memory and keeps
the locality of the references is the compact
grid (Lagae and Dutré, 2008). It consists of two static
arrays (see Figure 1). The first is an indirection array
L that stores references to primitives. The second ar-
ray C contains the indexed cells of the grid. Each grid
cell stores a pointer to the beginning of an interval
within the array L. The end of the interval is implic-
itly given by the pointer in the adjacent cell within C.
Primitives that are referenced within this interval are
contained in the respective cell. Thus, the references
in L can be seen as sorted according to their cell index.

Figure 1: The compact grid representation. The grid cells
are lined up in C. Each cell stores an index (green) into L.
Together with the index stored in the consecutive cell, an in-
terval is given within L. The interval contains the references
(blue) to primitives that intersect this particular cell.

Parallel construction: We employ the algorithm
proposed in (Kalojanov and Slusallek, 2009) to
construct the compact grid. The advantage of this
approach is that it is independent of the primitive
distribution, because the construction problem is
reduced to sorting. The algorithm first iterates
over all primitives and counts how many cells the
primitives intersect to reserve space for the array L.
The entries of L are computed in a second iteration.
An entry consists of a cell index and a pointer to
the respective primitive. L is then sorted according
to the cell index. Then, all primitives that lie within
the same cell are contiguous in L. Parallel reduction
is used to compute the offsets that are stored in C
in the final step. The complexity and performance
of the compact grid construction are defined by the
employed sorting algorithm. Details are discussed in



Section 5. All steps can be easily parallelized.

Parallel query: The query is performed by looping
in parallel over the corresponding primitives, e. g. the
tetrahedrons, per model. The cell index is computed
and the primitives, e. g. the points, that are assigned
to the same cell are tested for intersection by lookups
in L via the offset stored in C.

4.3 Spatial hashing

In contrast to basic uniform grids or compact
grids, spatial hashing can be employed to sub-
divide a possibly infinite simulation domain into
a regular grid. Therefore, a hash function
maps the three-dimensional cells of the infinite
grid to an one-dimensional hash-table of finite
size (Teschner. et al., 2003). For example, a point
with position p = (x,y,z) is hashed into a hash table
of size m by computing its cell index c as follows:

c =
[(⌊ x

d

⌋
∗u
)
⊕
(⌊ y

d

⌋
∗ v
)
⊕
(⌊ z

d

⌋
∗w
)]

mod m,

(3)
where u,v,w are large prime numbers and d is

the cell size. If multiple points are hashed to the
same hash cell, chaining is employed to resolve
these hash collisions, i. e. the points are stored in
a linked list specific to this cell. The construction
of such a hash table is difficult to parallelize. It
would require serialization of the access to the list
structure if two points are hashed to the same cell
simultaneously. Furthermore, frequent memory allo-
cations for the linked lists might be necessary if more
points move in and out of cells during the simulation.
(Teschner. et al., 2003) reserve a certain amount of
memory for each list during initialization to avoid
this problem, which is quite memory-inefficient.
Perfect hashing as proposed in (Fredman et al., 1984)
could be employed to avoid hash collision. Thereby,
an efficient construction of the hash table would be
possible, but at the expense of memory consumption.
In the next paragraph, we discuss solutions to these
problems.

Cuckoo hashing: A parallel hashing approach is
proposed in (Alcantara et al., 2009). It combines
the efficiency in construction time of the classi-
cal perfect hashing scheme (Fredman et al., 1984)
with multiple-choice perfect ”cuckoo” hash-
ing (Pagh and Rodler, 2004) that achieves high
occupancy. The approach employs a two-level
construction. In the first step, the keys are hashed
to a set of buckets. The buckets are aligned in one
large array B where all keys within the same bucket

are contiguous in memory. Step two works on each
bucket independently. The multiple-choice hashing
is performed on three hash tables T0,T1,T2 each with
its own hash function. Each bucket gets assigned
a certain interval within the hash tables. All keys
within a bucket are hashed to the first hash table T0.
If a hash collision occurs, the currently processed key
is stored in T0 and the previously stored key is kicked
out. This is repeated iteratively for all keys that are
kicked out. In each iteration i, the remaining keys
are stored in hash table Tj, with j = i mod d. It is
likely that there is a key which is constantly kicked
out of the hash tables. If this is the case, new hash
functions have to be chosen and the process has to
be repeated entirely. With increasing hash table size,
this is becoming unlikely and negligible in practice.

The key value is the cell index. Naturally, as
the primitives within the same grid cell get the
same cell index, the approach has to be extended to
multi-valued hashing. Therefore, each key gets a
counter and an index pointer in order to know how
many values it represents within the hash table and
where to find those values within a secondary buffer
array.

Discussion: The data structures of the compact grid
and cuckoo hashing are remarkably similar. The sec-
ondary buffer array resembles L and the hash tables
replace C. In contrast to the compact grid, C does not
scale with the simulation domain, but with the num-
ber of primitives. The array sizes for the buckets and
hash tables are reportedly chosen such that the occu-
pancy reaches 80% for the buckets and 70% for the
hash tables on average (Alcantara et al., 2009).

In this section, we have described two approaches
based on uniform grids for efficient construction and
collision query. In the next section, we discuss imple-
mentation details and decisions we make that make
the approaches specifically suited for medical simu-
lators where the close proximities and many interac-
tions between the models provide a challenge.

5 IMPLEMENTATION

In this section, we discuss the implementation details
and the influence of parameters on the efficiency of
both approaches. In general, the reduced memory
requirements and the increased efficiency compared
to the basic uniform grid can be attributed to the fact
that L is a static array (Lagae and Dutré, 2008). On
the other hand, the static array demands a reconstruc-
tion from scratch in dynamic scenes if the number of
references to primitives varies from frame to frame



and, thus, changes the size of L. In the following we
discuss three aspects related to these arguments.

Cell size: The cell size influences the number of
primitive pairs that have to be tested for intersection.
For large cells, the number of primitives per cell
increases. For small cells, the bounding boxes
of the primitives might cover a large number of
cells. In (Teschner. et al., 2003), it is suggested that
the average edge length of all tetrahedrons should
be chosen to achieve optimal performance. For
the algorithms with sorting, the second criterion
has more severe implications. The more cells the
primitives cover, the larger the data array gets and
the longer the sorting takes. On the other hand, the
number of non-culled primitive pairs increases with
the cell size. Therefore, in general, we stick to the
recommendation and use the average edge length.
However, if the tetrahedrons are close to regular, the
maximal edge length is chosen.

Parallel sorting: The complexity and performance
of the compact grid construction are dominated by
the employed sorting algorithm. We tested a parallel
radix sort and a parallel re-implementation of the
sorting algorithm of the Standard Template Library
(STL) of C++. The last one is part of the OpenMP
Multi-Threaded Template Library (Beekhof, ;
Ope, 2005). Inherently, the radix sort does not take
advantage of pre-sorted sets of keys. Thus, its perfor-
mance is constant. On the other hand, the STL-sort
benefits from sets of keys that are predominantly
sorted. Such sets appear if the spatial configuration
of objects in a simulation domain is temporally
coherent i. e. is similar to the previous frame. In such
a case, only a small number of keys moves to new
spatial cells. A sorted set is quickly re-established.
However, using STL-sort on a largely distorted set
of keys might prove to be slower than radix sort
depending on the input size. In such cases it might
be beneficial to employ the radix sort algorithm.
Therefore, the amount of distorted keys is determined
by keeping track of the primitives’ bounding boxes.
If too many bounding boxes move into new spatial
cells, a threshold triggers the switch to radix sort, and
back. We discuss timings for both sorting algorithms
in the results section.

Z-curves: Primitives that intersect more than one
cell have to query the primitives stored in all the in-
tersected cells. It depends on the indexing function,
whether the order of the referenced primitives in L
is memory-coherent, i. e. are likely to be contigu-
ous in memory. Space-filling curves provide a so-

lution to this problem. They are a common tool in
computer science for mapping multidimensional data
to one dimension while preserving spatial locality as
good as possible. We propose to replace equation ( 1)
which orders the cells according to their Z-value by
the Lebesgue space filling curve, also called Z-order
space filling curve, to construct an array C that is more
spatially compact (see Figure 2). We employ the Z-
curves, because they can be efficiently computed by
bit-interleaving (Pascucci and Frank, 2001). Details
on the performance are discussed in Section 6.

Figure 2: The Z-curve changes the line up of the grid cells
in C to preserve the spatial locality. The intervals in L are
re-arranged, too.

Approximate collision detection: If the number of
references to primitives varies, L has to be resized
and constructed from scratch. In this case, the spatial
locality established by the index sort cannot be ex-
ploited in the sorting process anymore and the compu-
tation time for the sorting of L is increased. This com-
putational overhead can be avoided, if we assume a
maximal number of cell overlaps per primitive bound-
ing box and allocate sufficient memory for array L
during the initialization of the simulation. Thus, we
avoid the rebuild from scratch. However, the array
size should not deviate too much from the size actu-
ally needed, since it has to be sorted. We make the
assumption that eight cells suffice to cover the prim-
itives’ bounding boxes if the cell size is chosen to be
the maximal edge length. We experienced less ad-
ditional sorting time than what is needed if spatial
locality has to be re-established over the whole ar-
ray L. The assumption might not hold if the prim-
itive is stretched through deformation. In this case,
we approximate the collision handling. Therefore,



stacking eye skull

scene statistics

#points 4840 3167 8293

#edges 19620 16248 38352

#tris 9600 6472 13592

#tetras 10000 9819 23225

Table 1: Scene statistics for the three test scenarios.

we share the available cells among the cells actu-
ally covered by the primitives’ bounding box by ran-
dom assignment. Thus, cells not represented in L
might involve collision information that is missed.
However, we observed no visually implausible be-
havior in the simulation results. This is in agree-
ment with research results on collisions and percep-
tion (O’Sullivan and Dingliana, 2001). If accurate
collision handling is required, L is resized and built
up from scratch.

6 RESULTS

In this section, we evaluate the performance of
the presented methods in the context of interactive
deformable modeling. We compare to traditional
grid representations and analyze the construction
and query times of the approaches using a set of
test scenarios. Further, we discuss the impact of the
cell size on the performance and how the parallel
approaches scale with the number of threads.

Setup: We have integrated the approach
into a deformable modeling framework based
on the Finite Element Method for tetrahe-
drons (Müller and Gross, 2004) to accelerate the
collision handling. The timings have been obtained
on a commodity computer with one quad-core 2.66
GHz Intel Xeon E5430 CPU, 12 MB L2 cache and
4 GB of memory. For the scaling experiments, a
second computer with two quad-core 3.16 GHz
Intel Xeon X5460 CPUs, 2x6 MB L2 cache and
16 GB of memory has been used. The number of
cores is given with the timings, respectively. The
methods are implemented in high-level C++ with
STL. No low-level optimization such as SIMD is
used. Parallelization of the code is achieved using
OpenMP (Ope, 2005).

Test scenarios: The framework is applied to three
test scenarios. Their statistics are given in Table 1.
Stacking of deformable membranes is performed in
the first scene (see Figure 3) Here, the number of col-
lisions increases until all membranes are stacked up.

In the second and third scene, we apply the framework

Figure 3: Objects are stacked up. In the equilibrium, many
contacts persist over large time intervals. The index sort-
ing experiences a huge efficiency gain the more interactions
occur.

to medical simulations. In the eye data set (see Fig-
ure 4), the interaction between skull, fat tissue, skin
tissue, eye muscle, eye nerve, eye bulb and titanium
mesh is simulated. The titanium mesh is used in or-
bital reconstruction to fix fractures to the orbital floor
(see Figure 8). Thus, the eye bulb is repositioned. All
objects are in constant interaction. In the skull data
set, the interaction of the soft tissue with the skull,
upper jaw and lower jaw is simulated. The lower jaw
is repositioned and the effect on the skin tissue is sim-
ulated (see Figure 5).

Index sort vs. serial hashing: First, we compare the
parallel index-sort approach (IS) to the serial hashing
approach (SH) (Teschner. et al., 2003). We observe a
more efficient update of the points stored in the static
array of IS when compared to the repeated insertion
of the points into the dynamic arrays within the hash
cells, even when using only one core. The query is
slower in IS when using one core, due to the standard
parallelization technique of adding one additional
iteration to determine the size of the output array in
order to write out the collisions in parallel. However,
this is quickly compensated with each additional
core, see Figure 6. The first frame shows a high
initial computation time, since the array L is sorted
for the first time and spatial locality is established in
L. The frame rate stays interactive with the compact
grid approach, even when all membranes are stacked
up.

Index sort vs. Cuckoo hashing: We set the size
of the buckets and the size of the hash table so
that an occupancy of 71% is achieved on average.
Overfilling of the buckets or hash collisons that
enforces a repeated insertion has never occured in
our test runs, so we refer to the empirical results
in (Alcantara et al., 2009). The index sort approach
again shows superior insertion times with respect to
points, but falls back when inserting the footprints
of a large number of colliding edges. On the other
hand, the cuckoo hashing introduces some overhead.
This is due to the multiple hash key computations for



Figure 4: The orbital reconstruction data set. Left: eye
(red), fat tissue (blue) and skull (gray). Right: face tissue
(brown), eye (red), muscle (yellow) and nerve (green).

Figure 5: the prediction of skin-tissue deformations due
to bone realignments supports the preoperative planning in
craniomaxillofacial surgery. The lower jaw is repositioned
and the effects on the skin tissue is computed.

the three hash tables and keys that iteratively have
to find an empty hash cell. Performances are given
in Figure 7. The parallel scaling is discussed in the
following.

Parallel scaling: Ideally, the performance gain from
parallel algorithms should be linear in the number of
cores. However, this cannot be expected for several
reasons. First, there is some parallelization overhead
for synchronization and communication between dif-
ferent threads. Second, some parall algorithms have
to perform additional computations that only pay off
after providing a certain amount of additional cores,
e. g. additional loops over data arrays. Third, cer-
tain portions of an algorithm cannot be parallelized.
According to Amdahl‘s law, this limits the achievable
speedup (Amdahl, 1967). For example, if 90 percent
of the algorithm can be parallelized, the maximum
speedup is 10, regardless of the number of cores. Note
that the law assumes that the problem size remains the
same when parallelized.

The proportion of a program that is run in
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Figure 6: Collision-handling timings for the stacking scene
using spatial hashing (black) and index sort with one (red),
two (green) and four (blue) cores.
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Figure 7: Timings for the eye scene using index sort (red)
and cuckoo hashing (blue) with one, four and eight cores.

parallel can be estimated using: Pestimated =[
1

Smeasured
−1
]
/
[

1
#processors −1

]
.

We measure the speedup using the dual quad-core
machine with all eight cores and get an average
speedup of 3.2 for the index sort approach and 2.6
for the cuckoo hashing (based on the data shown in
Figure 7). Using the above equation, the estimated
amount of code is 80% for the index sort approach
and 70% for the cuckoo hashing approach. We see
two resons for these results. Regarding the index
sort approach, the STL-sort shows poor scaling
behavior which leads to a speedup of 1.5 for the
update functions. This is compensated by speedups
of 5 in the query functions. Regarding the cuckoo
hashing, the work is distributed to the threads per
bucket. When multi-value hashing is performed, the
fixed size of the buckets’ hash tables leads to unequal
work loads in the threads. Dynamically sized tables
would account for this, but would require additional
hashing to determine the actual number of values
hidden behind the unique keys.

Sorting performance: As is discussed in Section 5,
two parallel sort algorithms have been implemented.
The results support the assumptions made. For an
input size of 128000 entries in L, the radix sort takes
14ms on the 4-core system. The STL-sort takes less
than 6ms if 10% of the keys change their value and



Figure 8: Deformable modeling supports the preoperative
planning in craniomaxillofacial surgery. In orbital recon-
struction, a titanium mesh is placed beneath the bulb for
repositioning. All simulated objects are in constant inter-
action. The spatial configuration only changes slowly over
time.

3ms for 2%. A randomly filled array performs about
equally in both approaches. Thus, the STL-sort is
always to be preferred for scenes with a complexity
like the ones we show here.

Z-curve reordering: We apply the Z-curve to Equa-
tion 1 to increase the spatial locality in memory. The
index sort only profits marginally when rearranging
L. However, the query of edge-triangle intersections
gets a performance boost by about 8% on average.
When querying the intersection for one edge, the
triangles that are spatially close and likely to intersect
are also close in memory and likely to be already
loaded into the cache.

Approximate collision detection:

In Section 5, we have proposed a simple accel-
eration technique based on the index sort approach.
Therefore, we set L to be a static array in the next ex-
periment. Further, we set for each primitive a fixed
number of cell entries it can write to, i. e. 27, 8 and
1 in consecutive test runs. Its impact on performance
as well as on the introduced average error in the sim-
ulation are given in Table 2. The error is measured
as the Euclidean distance a deformed point is deviat-
ing from the original simulation result, i. e. the result
achieved using a dynamic array L that provides the
number of cells actually needed by the primitives. We
take the final simulation result of the skull scene, i. e.
the simulation has reached an equilibrium. We set the
cell size to be the average edge length. Errors below
one millimeter can be tolerated in this field of appli-
cations. We observe a performance boost of factor 2.8
when switching from 27 to 1 cell per primitive in the
eye scene and of factor 1.9 when switching from 27
to 8 cells in the skull scene.

eye skull

#cells per

primitive

27 8 1 27 8 1

max. deviation

[cm]

1.0∗
10−5

0.03 0.034 3.0∗
10−4

0.12 0.22

avg. deviation

[cm]

1.3∗
10−5

0.002 0.024 1.6∗
10−6

0.0008 0.003

standard

deviation [cm]

1.2∗
10−5

0.003 0.057 9.1∗
10−6

0.0045 0.009

Table 2: Approximate collision handling: timings for the
medical scenes with a fixed numbers of cells in L and the
measured errors in cm. Errors within 1 millimeter deviation
are tolerable.

7 CONCLUSION

We have presented two acceleration data structures
based on uniform grids for the efficient collision han-
dling in a deformable modeling framework. Impor-
tant aspects critical to the performance of such a sys-
tem were discussed. We have analyzed Z-curves for
the mapping of spatial locality to the grid represen-
tations. Further, the STL-sorting algorithm exhibits
better performance than the radix sort when applied
in the index sort approach. However, improved paral-
lel sorting algorithms have to be developed to achieve
better speedups. Finally, we have shown how the col-
lision handling can be approximated using the spa-
tial data structures for an additional increase in per-
formance. We have analyzed the performance aspects
of the presented uniform grid approaches and gave a
detailed scaling analysis.

The efficient update of the data structures as well
as the efficient query specifically improve the perfor-
mance in medical simulation scenarios where lots of
collisions persist over large time intervals. In future
work, we would like to investigate improved culling
schemes such as (Tang et al., 2008) and incorporate
the findings into our framework.
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Lagae, A. and Dutré, P. (2008). Compact, fast and robust
grids for ray tracing. Computer Graphics Forum (Pro-
ceedings of the 19th Eurographics Symposium on Ren-
dering), 27(4):1235–1244.

Larsson, T. and Akenine-Moeller, T. (2001). Collision de-
tection for continuously deforming bodies. In Euro-
graphics, pages 325 – 333.

Lauterbach, C., Yoon, S.-E., Tuft, D., and Manocha, D.
(2006). RT-DEFORM: Interactive ray tracing of dy-
namic scenes using BVHs. In Symposium on Interac-
tive Ray Tracing 2006, pages 39 –46.

Levinthal, C. (1966). Molecular model-building by com-
puter. Scientific American, 214:42–52.

Lin, M. and Manocha, D. (2003). Collision and proximity
queries. In Handbook of Discrete and Computational
Geometry.

Müller, M. and Gross, M. (2004). Interactive virtual mate-
rials. In GI ’04: Proceedings of Graphics Interface,
pages 239–246.

O’Sullivan, C. and Dingliana, J. (2001). Collisions and per-
ception. ACM Trans. Graph., 20(3):151–168.

Pagh, R. and Rodler, F. F. (2004). Cuckoo hashing. J. Al-
gorithms, 51(2):122–144.

Pascucci, V. and Frank, R. J. (2001). Global static in-
dexing for real-time exploration of very large regu-
lar grids. In Supercomputing ’01: Proceedings of
the 2001 ACM/IEEE conference on Supercomputing
(CDROM), pages 2–2, New York, NY, USA. ACM.

Rabin, M. O. (1976). Probabilistic algorithms. In Traub,
J. F., editor, Algorithms and complexity: new di-
rections and recent results, pages 21–39. Academic
Press, New York.

Samet, H. and Webber, R. E. (1988). Hierarchical data
structures and algorithms for computer graphics. part
i. IEEE Comput. Graph. Appl., 8(3):48–68.

Tang, M., Curtis, S., Yoon, S.-E., and Manocha, D. (2008).
Interactive continuous collision detection between de-
formable models using connectivity-based culling. In
SPM ’08: Proceedings of the 2008 ACM symposium
on Solid and physical modeling, pages 25–36, New
York, NY, USA. ACM.

Tang, M., Manocha, D., and Tong, R. (2009). Multi-core
collision detection between deformable models. In
SPM ’09: 2009 SIAM/ACM Joint Conference on Ge-
ometric and Physical Modeling, pages 355–360, New
York, NY, USA. ACM.

Teschner., M., Heidelberger, B., Mueller, M., Pomeranets,
D., and Gross, M. (2003). Optimized spatial hashing
for collision detection of deformable objects. In Vi-
sion, Modeling, Visualization VMV’03, Munich, Ger-
many, pages 47 – 54.

Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann,
G., Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure,
F., Magnenat-Thalmann, N., Strasser, W., and Volino,
P. (2005). Collision detection for deformable objects.
Computer Graphics forum 24, 24(1):61 – 81.


	Introduction
	Related Work
	Context
	Spatial data structures
	Uniform grid
	Compact grid
	Spatial hashing

	Implementation
	Results
	Conclusion

