
Electronic Journal of Statistics
Vol. 11 (2017) 4945–4968
ISSN: 1935-7524
https://doi.org/10.1214/17-EJS1335SI

Fast Bayesian hyperparameter

optimization on large datasets∗

Aaron Klein and Stefan Falkner

Department of Computer Science
University of Freiburg

e-mail: kleinaa@cs.uni-freiburg.de
e-mail: sfalkner@cs.uni-freiburg.de

Simon Bartels and Philipp Hennig

Max Planck Institute for Intelligent Systems
Spemannstr. 34, Tübingen, Germany

e-mail: simon.bartels@tuebingen.mpq.de
e-mail: phennig@tuebingen.mpg.de

and

Frank Hutter

Department of Computer Science
University of Freiburg

e-mail: fh@cs.uni-freiburg.de

Abstract: Bayesian optimization has become a successful tool for opti-
mizing the hyperparameters of machine learning algorithms, such as sup-
port vector machines or deep neural networks. Despite its success, for large
datasets, training and validating a single configuration often takes hours,
days, or even weeks, which limits the achievable performance. To acceler-
ate hyperparameter optimization, we propose a generative model for the
validation error as a function of training set size, which is learned during
the optimization process and allows exploration of preliminary configura-
tions on small subsets, by extrapolating to the full dataset. We construct
a Bayesian optimization procedure, dubbed Fabolas, which models loss
and training time as a function of dataset size and automatically trades
off high information gain about the global optimum against computational
cost. Experiments optimizing support vector machines and deep neural net-
works show that Fabolas often finds high-quality solutions 10 to 100 times
faster than other state-of-the-art Bayesian optimization methods or the
recently proposed bandit strategy Hyperband.

Received June 2017.

1. Introduction

The performance of many machine learning algorithms hinges on certain hy-
perparameters. For example, the prediction error of non-linear support vector

∗This paper is an extended version of our AISTATS 2017 conference paper Klein et al.
(2017a)

4945

http://projecteuclid.org/ejs
https://doi.org/10.1214/17-EJS1335SI
mailto:kleinaa@cs.uni-freiburg.de
mailto:sfalkner@cs.uni-freiburg.de
mailto:simon.bartels@tuebingen.mpq.de
mailto:phennig@tuebingen.mpg.de
mailto:fh@cs.uni-freiburg.de

4946 A. Klein et al.

machines depends on regularization and kernel hyperparameters C and γ; and
modern neural networks are sensitive to a wide range of hyperparameters, in-
cluding learning rates, momentum terms, number of units per layer, dropout
rates, weight decay, etc. (Montavon et al., 2012). The poor scaling of näıve
methods like grid search with dimensionality has driven interest in more sophis-
ticated hyperparameter optimization methods over the past years (Bergstra
et al., 2011; Hutter et al., 2011; Bergstra and Bengio, 2012; Snoek et al., 2012;
Bardenet et al., 2014; Bergstra et al., 2014; Swersky et al., 2013, 2014; Snoek
et al., 2014, 2015). Bayesian optimization has emerged as an efficient frame-
work, achieving impressive successes. For example, in several studies, it found
better instantiations of convolutional network hyperparameters than domain ex-
perts, repeatedly improving the top score on the CIFAR-10 (Krizhevsky, 2009)
benchmark without data augmentation (Snoek et al., 2012; Domhan et al., 2015;
Snoek et al., 2015).

In the traditional setting of Bayesian hyperparameter optimization, the loss
of a machine learning algorithm with hyperparameters x ∈ X is treated as the
“black-box” problem of finding argminx∈X

f(x), where the only mode of in-
teraction with the objective f is to evaluate it for inputs x ∈ X. If individual
evaluations of f on the entire dataset require days or weeks, only very few evalu-
ations are possible, limiting the quality of the best found value. Human experts
instead often study performance on subsets of the data first, to become famil-
iar with its characteristics before gradually increasing the subset size (Bottou,
2012; Montavon et al., 2012). This approach can still outperform contemporary
Bayesian optimization methods.

Motivated by the experts’ strategy, here we leverage dataset size as an addi-
tional degree of freedom enriching the representation of the optimization prob-
lem. We treat the size of a randomly subsampled dataset Nsub as an additional
input to the blackbox function, and allow the optimizer to actively choose it
at each function evaluation. This allows Bayesian optimization to mimic and
improve upon human experts when exploring the hyperparameter space. In the
end, Nsub is not a hyperparameter itself, but the goal remains a good perfor-
mance on the full dataset, i.e. Nsub = N .

While in this paper we focus on hyperparameter optimization for large data-
sets, in principle, our method could also be applied to other scenarios where
cheap but potentially biased and noisy approximations of the actual objective
function are available, such as, for instance, in the work by Kandasamy et al.
(2016), which introduces a Bayesian optimization variant that can optimize ex-
pensive functions by exploiting cheaper fidelities. Our method’s only assumption
is that one can define a proper basis function to describe the similarity between
the objective function and its approximations. Another interesting application
would be to likelihood-free inference, where Bayesian optimization has been
successfully applied before (Gutmann and Corander, 2016).

Hyperparameter optimization for large datasets has been explored by other
authors before. Our approach is similar to Multi-Task Bayesian optimization by
Swersky et al. (2013), where knowledge is transferred between a finite number
of correlated tasks. If these tasks represent manually-chosen subset-sizes, this

Fast Bayesian hyperparameter optimization on large datasets 4947

method also tries to find the best configuration for the full dataset by evaluating
smaller, cheaper subsets. However, the discrete nature of tasks in that approach
requires evaluations on the entire dataset to learn the necessary correlations.
Instead, our approach exploits the regularity of performance across dataset size,
enabling generalization to the full dataset without evaluating it directly.

Other approaches for hyperparameter optimization on large datasets include
work by Nickson et al. (2014), who estimated a configuration’s performance on
a large dataset by evaluating several training runs on small, random subsets
of fixed, manually-chosen sizes. Krueger et al. (2015) showed that, in practi-
cal applications, small subsets can suffice to estimate a configuration’s quality,
and proposed a cross-validation scheme that sequentially tests a fixed set of
configurations on a growing subset of the data, discarding poorly-performing
configurations early.

Li et al. (2017) proposed a multi-arm bandit strategy, called Hyperband,
which dynamically allocates more and more resources to randomly sampled
configurations based on their performance on subsets of the data. Hyperband
assures that only well-performing configurations are trained on the full dataset
while discarding bad ones early. Despite its simplicity, in their experiments the
method was able to outperform well-established Bayesian optimization algo-
rithms.

The remainder of the paper is structured as follow: In §2, we review Bayesian
optimization, in particular the Entropy Search algorithm (Hennig and Schuler,
2012) on which our method is based. In §3 we show that subsets of the training
data are often sufficient to reason about the performance of a hyperparame-
ter configuration. In §4 we then present previous approaches such as Multi-task
Bayesian optimization and Hyperband. In §5, we introduce our new Bayesian op-
timization method Fabolas for hyperparameter optimization on large datasets.
In each iteration, Fabolas chooses the configuration x and dataset size Nsub

predicted to yield most information about the loss-minimizing configuration on
the full dataset per unit time spent. Finally, in §6, a broad range of experi-
ments with support vector machines and various deep neural networks show
that Fabolas often identifies good hyperparameter settings 10 to 100 times
faster than state-of-the-art Bayesian optimization methods acting on the full
dataset, as well as Hyperband.

2. Bayesian optimization

Given a black-box function f : X → R, Bayesian optimization1 aims to find
an input x� ∈ argminx∈X

f(x) that globally minimizes f . It requires a prior
p(f) over the objective function f and an acquisition function ap(f) : X →
R quantifying the utility of an evaluation at any x. Popular choices for the
objective model are Gaussian processes (Snoek et al., 2012) (see Section 2.1),
random forests (Hutter et al., 2011) or Bayesian neural networks (Snoek et al.,
2015; Springenberg et al., 2016).

1Comprehensive tutorials are presented by Brochu et al. (2010) and Shahriari et al. (2016).

4948 A. Klein et al.

With these ingredients, the following three steps are iterated (Brochu et al.,
2010): (1) find the most promising xn+1 ∈ argmax ap(x) by numerical opti-
mization; (2) evaluate the expensive and often noisy function yn+1 ∼ f(xn+1)+
N (0, σ2) and add the resulting data point (xn+1, yn+1) to the set of observa-
tions Dn = (xj , yj)j=1...n; and (3) update p(f | Dn+1) and ap(f |Dn+1). Algo-
rithm 1 shows pseudo code for Bayesian optimization. Typically, evaluations of
the acquisition function a are cheap compared to evaluations of f such that the
optimization effort is negligible.

Algorithm 1 Bayesian Optimization
1: Initialize data D0 using an initial design.
2: for t = 1, 2, . . . do
3: Fit probabilistic model for f(x) on data Dt−1

4: Choose xt by maximizing the acquisition function ap(x)
5: Evaluate yt ∼ f(xt) +N (0, σ2), and augment the data: Dt = Dt−1 ∪ {(xt, yt)}
6: Choose incumbent x̂t ← argmin{y1, ...yt}
7: end for

2.1. Gaussian processes

Gaussian processes (GP) are a prominent choice for p(f), thanks to their de-
scriptive power and analytic tractability (e.g. Rasmussen and Williams, 2006).
Formally, a GP is a collection of random variables, such that every finite subset
of them follows a multivariate normal distribution. A GP is identified by a mean
function m (often set to m(x) = 0 ∀x ∈ X), and a positive definite covariance
function (kernel) k(x,x′). Given observations Dn = (xj , yj)j=1...n = (X,y)
with joint Gaussian likelihood p(y | X, f(X)), the posterior p(f |Dn) follows
another GP, with mean and covariance functions of tractable, analytic form.

The covariance function determines how observations influence the predic-
tion. For the hyperparameters we wish to optimize, we adopt the Matérn 5/2
kernel (Matérn, 1960), in its Automatic Relevance Determination form (MacKay
and Neal, 1994). This stationary, twice-differentiable model constitutes a rela-
tively standard choice in the Bayesian optimization literature. In contrast to the
Gaussian kernel popular elsewhere, it makes less restrictive smoothness assump-
tions, which can be helpful in the optimization setting (Snoek et al., 2012):

k5/2(x,x
′) = θ

(
1 +

√
5dλ(x,x

′) + 5/3d2λ(x,x
′)
)
e−

√
5dλ(x,x′). (1)

Here, θ and λ are free parameters—hyperparameters of the GP surrogate
model—and dλ(x,x

′) = (x−x′)T diag(λ)(x−x′) is the Mahalanobis distance.
An additional hyperparameter of the GP model is a overall noise covariance
needed to handle noisy observations. For clarity: These GP hyperparameters
are internal hyperparameters of the Bayesian optimizer, as opposed to those of
the target machine learning algorithm to be tuned. Section 5.4 shows how we
handle them.

Fast Bayesian hyperparameter optimization on large datasets 4949

2.2. Acquisition functions

The role of the acquisition function is to trade off exploration vs. exploitation.
Popular choices include Expected Improvement (EI) (Mockus et al., 1978), Up-
per Confidence Bound (UCB) (Srinivas et al., 2010), Entropy Search (ES) (Hen-
nig and Schuler, 2012), and Predictive Entropy Search (PES) (Hernández-Lobato
et al., 2014). In our experiments, we will use EI and ES.

We found EI to perform robustly in most applications, providing a solid
baseline; it is defined as

aEI(x|Dn) = Ep[max(fmin − f(x), 0)] . (2)

where fmin is the best function value known (also called the incumbent). This ex-
pected drop over the best known value is high for points predicted to have small
mean and/or large variance. Its performance is, in our experience, comparable
to UCB which is why we do not include it in our later experiments.

Both ES and PES, estimate the information about the location of the min-
imum as the measure of utility. This quantity takes global information into
account contrasting the local nature of EI and UCB. The difference between ES
and PES stems from different approximations made to compute the acquisition
function, but no conceptual distinction. Why we decided to use ES over PES is
discussed in Section 5.4. Due to the complexity of the algorithm and to provide
the necessary detail to extend ES to our method, the following section contains
a detailed introduction.

2.3. Entropy search

Entropy Search is a more recent acquisition function that selects evaluation
points based on the predicted information gain about the optimum, rather than
aiming to evaluate near the optimum. At the heart of ES lies the probability
distribution pmin(x | D) := p(x ∈ argminx′∈X

f(x′) | D), the belief about the
function’s minimum given the prior on f and observations D. Given p(f), the
probability that a point is the minimum is defined with suggestive notation as

pmin(x|D) = p(x ∈ argmin
x′∈X

f(x′)|D)

=

∫
p(f |D)

∏
x̃∈[a,b]
x̃ �=x

Θ[f(x̃)− f(x)] df (3)

where Θ is the Heaviside step function. The product in this equation is over an
infinite domain (yet well-defined if p(f |D) is sufficiently regular). In practice, it
has to be represented in a finite form. We follow the approach of Hennig and
Schuler (2012), who approximate p(f |D) by a finite-dimensional Gaussian over
an irregular grid of points r1, ..., rZ , which are designed heuristically to provide
good interpolation resolution on pmin. Like Hennig and Schuler (2012), we sam-
ple these so called representer points using Expected Improvement. This step

4950 A. Klein et al.

reduces pmin to a discrete distribution, and turns the infinite product in Equation
3 into a finite one. That distribution itself is still analytically intractable, but
an analytically tractable (in particular, differentiable) approximation qmin(rj)
of good empirical quality can be computed using Expectation Propagation (EP)
(Minka, 2001), of computational cost O(Z4). EP does not only yield pmin, but
also the gradient with respect to means and covariances of the model at the
representer points allowing efficient computations after an expensive initial cal-
culation of these quantities. This particular application of EP (dubbed EPMGP)
to Gaussian integrals was introduced by Cunningham et al. (2012) where all the
details can be found.

The information gain at x is then measured by the expected Kullback-Leibler
divergence (relative entropy) between pmin(· | D∪{(x, y)}) and the uniform dis-
tribution u(x), with expectations taken over the measurement y to be obtained
at x:

aES(x) := Ep(y|x,D)

[∫
pmin(x

′ | D′) · log pmin(x
′ | D′)

u(x′)
dx′

]
, (4)

where D′ = D ∪ {(x, y)}. The primary numerical challenge in this framework is
the computation of pmin(· | D′) and the integral above. Due to the intractability,
several approximations have to be made.

Algorithm 2 provides pseudocode for our implementation of Entropy Search.
Lines 1–12 precompute various quantities that are needed for evaluating the
acquisition function, which is optimized in line 13. Specifically, after sampling
K hyperparameter settings from the marginal loglikelihood for the GP using
MCMC (line 1), for every hyperparameter setting θi, the algorithm

• fits a GP (line 4),
• samples representer points with respect to aEI (line 5),

Algorithm 2 Selection of next point by Entropy Search
Require: Dn = (xj , yj)j=1...n

1: Sample K instantiations of the GP hyperparameters Θ = [θ1, . . . , θK] w.r.t. marginal
likelihood

2: pmin ← [],Ω ← [],R ← [],U ← []
3: for i = 1 . . .K do
4: Fit GP model M(i) on Dn with hyperparameter θi
5: (r1, aEI(r1)) . . . , (rZ , aEI(rZ)) ∼ aEI(x|M(i)) � Sample Z representer points
6: R[i] ← r1, . . . , rZ � Store representer points R ∈ R

K×Z×D

7: U [i] ← aEI(r1), . . . , aEI(rZ) � Store LogEI values of the representer points
U ∈ R

K×Z

8: Let μ,Σ be the mean and covariance matrix at r1, . . . , rZ based on M(i)

9: pmin[i] ← computePmin (μ,Σ) � Probability of each r1, . . . , rZ to be the minimum.
10: For p = 1, . . . , P : ωp ∼ N (0, IZ) � Stochastic change to hallucinate P values at

representer points
11: Ω[i] ← [ω1, . . . ,ωP] � Store stochastic change for the innovations Ω ∈ R

K×Z×P

12: end for
13: xn+1 ← argmaxx∈X InformationGain(x,Dn,R,U ,Ω,Θ)
14: return xn+1

Fast Bayesian hyperparameter optimization on large datasets 4951

• stores the representer points and their logarithmic EI values (lines 6 and
7),

• computes μ and Σ for the joint predictive distribution at the representer
points (line 8),

• computes pmin given μ and Σ, using EPMGP (line 9),
• draws random points from a normal distribution centered at 0 and unit

variance (line 10) for the innovation in Algorithm 4, and stores them (line
11) for later usage.

Given these quantities, Algorithm 3 then computes the ES acquisition func-
tion from Equation 4.

For each hyperparameter θi of the GP, it then carries out the following steps:

• train a model M(i) on the data D by computing the Cholesky decompo-
sition (line 3)

• based on this model M(i), compute the mean and the variance for the test
point x and the mean and covariance for the representer points r1, . . . , rZ
(line 4 and 5)

• For each of the P stochastic change vectors ωp sampled in Algorithm 1
(line 10) and stored in Ω[i, j, :],

– fantasize the change Δμ,ΔΣ of the current posterior p(f |D) (line 7)
with Algorithm 4

– estimate the pmin distribution of this updated posterior (line 8)

– compute the relative change in entropy (line 9)

• take the expectation over p(y|x, D) of Equation (3) (line 10)
• marginalize the acquisition function aES(x) over all hyperparameters Θ

(line 13)

Algorithm 3 InformationGain
Require: x,D,R,U ,Ω,Θ
1: a(x) ← 0
2: for i = 1, . . .K do � Marginalization over Θ
3: Let M(i) be the trained model on D with hyperparameters θi
4: Let μ, σ2 be the predictive mean and variance at x based on M(i)

5: Let μ,Σ be the mean and covariance matrix at r1, . . . , rZ based on M(i)

6: for j = 0, . . . P do � Averages over all hallucinated values.
7: Δμ,ΔΣ ← Innovations(x,M(i),R[i, :, :], σ2,Ω[i, j, :]) � Change in the posterior

believe at r1, . . . , rZ if we would evaluate at x
8: qmin ← computePmin (μ+Δμ,Σ+ΔΣ) � New Pmin of the updated posterior
9: dH ← −

∑
j qmin

(
log(qmin) +U [i]

)
+

∑
j pmin[i]

(
log(pmin[i]) +U [i]

)
10: a(x) ← a(x) + 1

P
dH

11: end for
12: end for
13: return 1

K
a(x)

This algorithm in turns makes use of Algorithm 4 to compute the innovations,
which

4952 A. Klein et al.

• computes the change in the mean Δμ by first computing the correlation
Σ(x, r) of x and the representer points r1, . . . , rZ and multiplying it with
the Cholesky decomposition of the k(x,x) and the vector ω ∈ Ω. Note
that this change is stochastic (line 1).

• computes the change of the covariance (line 2) which is deterministic

Algorithm 4 Innovations

Require: x,M, r1, . . . , rZ , σ2,ω
1: Δμ(x) = Σ(x, r) · σ2 · C[σ2 + σ2

noise]ω � Σ(x,x′) denotes the correlation between x and
x′ based on M

2: ΔΣ(x) = Σ(x, r) · σ2 · Σ(x, r)T

3: return Δμ(x),ΔΣ(x)

Despite the conceptual and computational complexity of ES, it offers a well-
defined concept for information gained from function evaluations, which can be
meaningfully traded off against other quantities, such as the evaluations’ cost.

3. Reasoning across dataset subsets

The runtime of machine learning algorithms usually scales polynomially with
the number of data points Nsub, i.e. O(Nα

sub) for some positive α. While the
computational cost of training grows, the loss of machine learning methods
usually decreases with the number of training samples. The computational cost
is often largely independent of the hyperparameter values, but the loss depends
crucially on them (which is the reason we want to optimize them in the first
place).

For an intuition on how performance changes with dataset size, we evaluated
a grid of 400 configurations of a support vector machine (SVM) on subsets of the
MNIST dataset (LeCun et al., 2001); MNIST has N = 50 000 data points and
we evaluated relative subset sizes s := Nsub/N ∈ {1/512, 1/256, 1/128, . . . , 1/4, 1/2, 1}.

Figure 1 visualizes the validation error (top) and training time (bottom) of
these configurations on s = 1/128, 1/16, 1/4, and 1. Evidently, just 1/128 of the
dataset is quite representative and sufficient to locate a reasonable configura-
tion. Additionally, there are no deceiving local optima on smaller subsets. The
training time, however increases substantially with the number of datapoints,
single configurations take only a few seconds to train on s = 1/128 but can take
up to a few hours on the full dataset. Based on these observations, we expect
that relatively small fractions of the dataset yield representative performances
and therefore vary our relative size parameter s on a logarithmic scale.

4. Previous work

Making use of dataset subsets to seed up hyperparameter optimization has been
investigated by others before. In this Section we will present two approaches that
are similar to ours, namely Multi Task Bayesian Optimization and Hyperband.

Fast Bayesian hyperparameter optimization on large datasets 4953

Fig 1. Validation error (top row) and training time (bottom row) of a grid of 400 SVM config-
urations (20 settings of each of the regularization parameter C and kernel parameter γ, both
on a log-scale in [−10, 10]) for subsets of the MNIST dataset (LeCun et al., 2001) of various
sizes Nsub. Small subsets are quite representative: The validation error of bad configuration
(yellow) remains constant at around 0.9, whereas the region of good configurations (blue) does
not change drastically with s. Both hyperparameters also have an influence on the training
time, even though it is less dramatic than the influence of the dataset size.

4.1. Multi-task Bayesian optimization

TheMulti-Task Bayesian optimization (MTBO) method by Swersky et al. (2013)
refers to a general framework for optimizing in the presents of different, but cor-
related tasks. Given a set of such tasks T = {1, . . . , T}, the objective function
f : X × T → R corresponds to evaluating a given x ∈ X on one of the tasks
t ∈ T. The relation between points in X×T is modeled via a GP using a product
kernel:

kMT((x, t), (x
′, t′)) = kT (t, t

′) · k5/2(x,x
′) . (5)

The kernel kT is represented implicitly by the Cholesky decomposition of k(T,T)
whose entries are sampled via MCMC together with the other hyperparameters
of the GP. By considering the distribution over the optimum on the target task
t∗ ∈ T, pt∗min(x | D) := p(x ∈ argminx′∈X

f(x′, t = t∗) | D), and computing any
information w.r.t. it, Swersky et al. (2013) use the information gain per unit
cost as their acquisition function2:

2In fact, Swersky et al. (2013) deviated slightly from this formula (which follows the ES
approach of Hennig and Schuler (2012)) by considering the difference in information gains in
pt∗min(x | D) and pt∗min(x | D ∪ {(x, y)}). They stated this to work better in practice, but we
did not find evidence for this in our experiments and thus, for consistency, use the variant
presented here throughout.

4954 A. Klein et al.

aMT(x, t) : =
1

c(x, t)
Ep(y|x,t,D)

[∫
pt∗min(x

′ | D′) · log pt∗min(x
′ | D′)

u(x′)
dx′

]
, (6)

where D′ = D ∪ {(x, t, y)}. The expectation represents the information gain
on the target task averaged over the possible outcomes of f(x, t) based on the
current model. If the cost c(x, t) of a configuration x on task t is not known a
priori it can be modelled the same way as the objective function.

This model supports machine learning hyperparameter optimization for large
datasets by using discrete dataset sizes as tasks. Swersky et al. (2013) indeed
studied this approach for the special case of T = {0, 1}, representing a small
and a large dataset; this will be a baseline in our experiments.

4.2. Hyperband

Hyperband (Li et al., 2017) is a multi-arm bandit strategy based on random
search. It was developed concurrently with our method3, and, similar to it,
makes uses of the principle that hyperparameter configurations performing poorly
on subsets of the data are very likely to also perform poorly on the full datasets.

In each iteration i, Hyperband samples ni configurations randomly and uses
successive halving (Jamieson and Talwalkar, 2016) to discard hyperparameter
configurations after evaluating them on subsets of the data. Hyperband iter-
atively calls successive halving with different tradeoffs between breadth (i.e.,
number of configurations) and depth (i.e., subset size), such that each iteration
takes roughly the same time. Hyperband returns its first suggested hyperpa-
rameter setting after its first run of successive halving.

5. Fabolas

Here, we introduce our new approach for FAst Bayesian Optimization on LArge
data Sets (Fabolas). While traditional Bayesian hyperparameter optimizers
model the loss of machine learning algorithms on a given dataset as a blackbox
function f to be minimized, Fabolas models loss and computational cost across
dataset size and uses these models to carry out Bayesian optimization with an
extra degree of freedom. The blackbox function f : X × R → R now takes
another input representing the data subset size; we will use relative sizes s =
Nsub/N ∈ [0, 1], with s = 1 representing the entire dataset. While the eventual
goal is to minimize the loss f(x, s = 1) for the entire dataset, evaluating f for
smaller s is usually cheaper, and the function values obtained correlate across s.
Unfortunately, this correlation structure is initially unknown, so the challenge
is to design a strategy that trades off the cost of function evaluations against
the benefit of learning about the scaling behavior of f and, ultimately, about
which configurations work best on the full dataset. Following the nomenclature
of Williams et al. (2000), we call s ∈ [0, 1] an environmental variable that can

3The first publications on the two methods were Klein et al. (2015) and Li et al. (2016),
respectively.

Fast Bayesian hyperparameter optimization on large datasets 4955

be changed freely during optimization, but that is set to s = 1 (i.e., the entire
dataset size), at evaluation time.

We propose a principled rule for the automatic selection of the next (x, s)
pair to evaluate. In a nutshell, where standard Bayesian optimization would
always run configurations on the full dataset, we use ES to reason about, how
much can be learned about performance on the full dataset from an evaluation
at any s. In doing so, Fabolas automatically determines the amount of data
necessary to (usefully) extrapolate to the full dataset.

5.1. Modelling loss and computational cost

To transfer the insights from the illustrative example in Section 3 into a formal
model for the loss and cost across subset sizes, we extend the GP model by an ad-
ditional input dimension, namely s ∈ [0, 1]. This allows the surrogate to extrap-
olate to the full data set at s = 1 without necessarily evaluating there. We chose
a factorized kernel, consisting of the standard stationary kernel over hyperpa-
rameters, multiplied with a finite-rank (“degenerate”) covariance function in s:

k ((x, s), (x′, s′)) = k5/2 (x,x
′) ·

(
φT (s) · Σφ · φ(s′)

)
. (7)

Since any choice of the basis function φ yields a positive semi-definite covariance
function, this provides a flexible language for prior knowledge relating to s. We
use the same form of kernel to model the loss f and cost c, respectively, but
with different basis functions φf and φc.

The loss of a machine learning algorithms usually decreases with more train-
ing data. We incorporate this behavior by choosing φf (s) = (1, (1 − s)2)T to
enforce monotonic predictions with an extremum at s = 1. This kernel choice is
equivalent to Bayesian linear regression with these basis functions and Gaussian
priors on the weights.

To model computational cost c, we note that the complexity usually grows
with relative dataset size s. To fit polynomial complexity O(sα) for arbitrary
α and simultaneously enforce positive predictions, we model the log-cost and
use φc(s) = (1, s)T . As above, this amounts to Bayesian linear regression with
shown basis functions.

Figure 2 shows some examples of our basis functions. Figure 3 visualizes
the scaling of loss and cost with s for some random SVM configurations from
Section 3.

5.2. Algorithm description

Fabolas starts with an initial design, described in more detail in Section 5.3.
Afterwards, at the beginning of each iteration it fits GPs for loss and compu-
tational cost across dataset sizes s using the kernel from Eq. 7. Then, captur-
ing the distribution of the optimum for s = 1 using ps=1

min(x | D) := p(x ∈
argminx′∈X

f(x′, s = 1) | D), it selects the maximizer of the following acquisi-
tion function to trade off information gain versus cost:

4956 A. Klein et al.

Fig 2. Kernel values across different s with quadratic basis functions to model the objective
function (left) and linear basis function to model the cost (right).

Fig 3. Gaussian process model prediction (solid line) and the actual values (dashed) for the
objective function (left) and the cost function (right) based on a dot product of our Bayesian
linear regression kernel and a Matern kernel.

aF(x, s) : =
Ep(y|x,s,D)

[∫
ps=1
min(x

′ | D′) · log ps=1
min (x

′|D′)
u(x′) dx′

]
c(x, s) + coverhead

, (8)

where D′ = D ∪ {(x, s, y)}. Algorithm 5 shows pseudocode for Fabolas. Ad-
ditionally, we provide an open-source implementation at: https://github.com/
automl/RoBO.

Algorithm 5 Fast BO for Large Datasets (Fabolas)
1: Initialize data D0 using an initial design.
2: for t = 1, 2, . . . do
3: Fit GP models for f(x, s) and c(x, s) on data Dt−1

4: Choose (xt, st) by maximizing the acquisition function in Equation 8.
5: Evaluate yt ∼ f(xt, st) +N (0, σ2), also measuring cost zt ∼ c(xt, st) +N (0, σ2

c), and
augment the data: Dt = Dt−1 ∪ {(xt, st, yt, zt)}

6: Choose incumbent x̂t based on the predicted loss at s = 1 of all {x1,x2, . . . ,xt}.
7: end for

Our proposed acquisition function resembles the one used by MTBO (Eq. 6),
with two differences: First, MTBO’s discrete tasks t are replaced by a continuous
dataset size s (allowing to learn correlations without evaluations at s = 1, and
to choose the appropriate subset size automatically). Second, the prediction of

https://github.com/automl/RoBO
https://github.com/automl/RoBO

Fast Bayesian hyperparameter optimization on large datasets 4957

computational cost is augmented by the overhead of the Bayesian optimization
method. This inclusion of the reasoning overhead is important to appropriately
reflect the information gain per unit time spent: it does not matter whether the
time is spent with a function evaluation or with reasoning about which evalua-
tion to perform. In practice, due to cubic scaling in the number of data points of
GPs and the computational complexity of approximating ps=1

min , the additional
overhead of Fabolas is within the order of minutes, such that differences in
computational cost in the order of seconds become negligible in comparison.4

Being an anytime algorithm, Fabolas keeps track of its incumbent at each
time step. To select a configuration that performs well on the full dataset, it
predicts the loss of all evaluated configurations at s = 1 using the GP model
and picks the minimizer. We found this to work more robustly than globally
minimizing the posterior mean, or similar approaches.

5.3. Initial design

It is common in Bayesian optimization to start with an initial design of points
chosen at random or from a Latin hypercube design to allow for reasonable
GP models as starting points. To fully leverage the speedups we can obtain
from evaluating small datasets, we bias this selection towards points with small
(cheap) datasets in order to improve the prediction for dependencies on s: We
draw k random points in X (k = 10 in our experiments) and evaluate them
on different subsets of the data (for instance on the support vector machine
experiments we used s ∈ {1/64, 1/32, 1/16, 1/8}). This provides information on
scaling behavior, and, assuming that costs increase linearly or superlinearly
with s, these k function evaluations cost less than k

4 function evaluations on the
full dataset. This is important as the cost of the initial design, of course, counts
towards Fabolas’ runtime.

5.4. Implementation details

The presentation of Fabolas above omits some details that impact the per-
formance of our method. As it has become standard in Bayesian optimization
(Snoek et al., 2012), we use Markov-Chain Monte Carlo (MCMC) integration to
marginalize over the GPs hyperparameters (we use the emcee package (Foreman-
Mackey et al., 2013)). To accelerate the optimization, we use hyper-priors to
emphasize meaningful values for the parameters, chiefly adopting the choices of
the spearmint toolbox (Snoek et al., 2012): a uniform prior between [−10, 2]
for all length scales λ in log space, a lognormal prior (μa = 0, σ2

a = 1) for the
covariance amplitude θ, and a horseshoe prior with length scale of 0.1 for the
noise variance σ2.

4The same is true for standard ES and MTBO, but was never exploited as no emphasis
was put on the total wall clock time spent for the hyperparameter optimization. We want to
emphasize that we express budgets in terms of wall clock time (not function evaluations) since
this is natural in most practical applications.

4958 A. Klein et al.

We used the original formulation of ES by Hennig and Schuler (2012) rather
than the recent reformulation of PES by Hernández-Lobato et al. (2014). The
main reason for this is that the latter prohibits non-stationary kernels due to its
use of Bochner’s theorem for a spectral approximation. PES could in principle be
extended to work for our particular choice of kernels (using an Eigen-expansion,
from which we could sample features); since this would complicate making mod-
ifications to our kernel, we leave it as an avenue for future work, but note that in
any case it may only further improve our method. To maximize the acquisition
function we used the blackbox optimizer DIRECT (Jones, 2001).

5.5. Heteroscedastic noise

When making the subset size a parameter, we shuffle the data before an evalua-
tion to prevent bias incurred by repeatedly using the same subset. This shuffling
introduces additional noise which could be particularly high for small subsets.
To investigate this, we again used the SVM grid of 400 configurations from the
Section 3. We repeated each run with a given subset size K = 10 times using
different subsets, and estimate the observation noise variance at each point as:

σ2
obs(xj , si) =

1

K

K∑
k=1

(yk(xj , si)− μi,j)
2 , (9)

where μi,j = K−1
∑K

k=1 yk(xj , si). The red points in Figure 4 show the mean
and standard deviation of σ2

obs(xj , si) over all configurations for all si values
considered. As expected, the noise decreases with an increasing s, to a point
where σ2

obs is zero for s = 1.
In contrast to this heteroscedastic noise intrinsic to the random subsampling,

the commonly used noise hyperparameter σ2 of a GP (call it σ2
GP) is fixed

and typically estimated using MCMC sampling. To compare these two noise
values, for each fixed size s, we also trained a GP to predict losses and plotted
its estimates σ2

GP as blue markers in Figure 4. To obtain a good estimate of
the GP’s hyperparameters, we used a relatively long MCMC chain compared
to the ones used during Bayesian optimization. Figure 4 clearly shows that
the estimated variance σ2

GP is always larger than the observation noise σ2
obs.

This might indicate a certain misfit between the true objective and the space
of functions the GP can model (Sollich, 2002). Consequently, we believe the
heteroscedastic noise from subsampling the data to often be negligible compared
to the noise estimated by the MCMC sampling.

6. Experiments

For our empirical evaluation of Fabolas, we compared it to standard Bayesian
optimization (using EI and ES as acquisition functions), MTBO, and Hyper-
band. For each method, we tracked wall clock time (counting both optimization

Fast Bayesian hyperparameter optimization on large datasets 4959

Fig 4. Evaluating a configurations on a shuffled subset of the data induces an additional
noise, σ2

obs that depends on the dataset size s. The noise parameter σ2
GP estimated by MCMC

sampling for fixed dataset sizes.

overhead and the cost of function evaluations, including the initial design), stor-
ing the incumbent returned after every iteration. In an offline validation step, we
then trained models with all incumbents on the full dataset and measured their
test error.5 To obtain error bars, we performed 10 independent runs of each
method with different seeds (except on the grid experiment, where we could
afford 30 runs per method) and plot mean and standard deviation for all exper-
iments. Each optimization trajectory starts after all of its runs have evaluated
at least one configuration.6

We implemented Hyperband following Li et al. (2017) using the recommended
setting for the parameter η = 3 that controls the intermediate subset sizes. For
each experiment, we adjusted the budget allocated to each Hyperband iteration
to allow the same minimum dataset size as for Fabolas: 100 datapoints for the
support vector machine benchmarks and the maximum batch size for the neural
network benchmarks. We also followed the prescribed incumbent estimation
after each iteration as the configuration with the best performance on the full
dataset size.

6.1. Support vector machine surrogate

First, we considered a benchmark allowing the comparison of the various
Bayesian optimization methods on ground truth: we trained a random forest

5The residual network in Section 6.4 is an exception: here, we trained networks with the
incumbents on the full training set (50000 data points, augmented to 100000 as in the original
code) and then measured and plotted performance on the validation set.

6This way we avoid assigning a performance to unfinished runs, but we loose information
about the runtime distribution across independent runs.

4960 A. Klein et al.

Fig 5. Evaluation on SVM grid on MNIST. (Left) Test performance over time for variants
of MTBO with different dataset sizes for the auxiliary task. (Right) Baseline comparison of
test performance of the methods’ selected incumbents over time. We only plot means to avoid
clutter.

surrogate (Eggensperger et al., 2015) on our SVM grid on MNIST (described in
Section 3), for which we had performed all function evaluations beforehand.

We used this benchmark to adjust the number of data points for MTBO’s
auxiliary task. Figure 5 (left) evaluates MTBO variants with a single auxiliary
task with a relative size of 1/4, 1/16, 1/32, and 1/512, respectively. We found that the
smaller the auxiliary task, the faster MTBO improved initially, but the slower it
converged to the optimum. In the plot, MTBO with an auxiliary task of relative
size s = 1/512 did not achieve the same performance as the other variants in
the end. Given the global structure of the error surface (see Figure 1) and the
super-linear scaling of the SVM, we chose a very conservative auxiliary task
with s = 1/4 for the remaining experiments. This value worked consistently in
our experience, although the convergence to the best solution in some of the
later benchmarks was still rather slow.

At first glance, one might expect many tasks (e.g., with a task for each s value
above) to work best, but quite the opposite is true. In preliminary experiments,
we evaluated MTBO with up to 3 auxiliary tasks (s = 1/4, 1/32, and 1/512), but
found performance to strongly degrade with a growing number of tasks. We
suspect that the

(|T |
2

)
kernel parameters that have to be learned for the discrete

task kernel for |T | tasks are the main reason. If the MCMC sampling is too short,
the correlations are not appropriately reflected, especially in early iterations;
and an adjusted longer sampling creates a large computational overhead that
dominates wall-clock time. We consistently obtained the best performance with
only one auxiliary task.

We can now proceed to compare the different methods on this benchmark.
The right panel of Figure 5 shows results using EI, ES, random search, Hyper-
band, MTBO and fabolas. EI and ES performed equally well and found the
best configuration (which yields an error of 0.014, or 1.4%) after around 105 sec-
onds, roughly three times faster than random search. Hyperband outperformed
EI and ES by roughly one order of magnitude. MTBO achieves good perfor-
mance faster, requiring only around 2 × 103 seconds to find close-to-optimal

Fast Bayesian hyperparameter optimization on large datasets 4961

Fig 6. SVM hyperparameter optimization on the datasets MNIST(left), vehicle (middle) and
covertype (right). At each time, the plots show test performance of the methods’ respective
incumbents. Fabolas can find good configurations between 10 and 1000 times faster than the
other methods, but the is not always the fastest to find the true optimum.

solutions. Fabolas was roughly another order of magnitude faster than MTBO
in finding good configurations, and found close-to-optimal solutions at the same
time.

6.2. Support vector machines

For a more realistic scenario, we optimized the same SVM hyperparameters (see
Table 1) without a surrogate on MNIST and two other prominent UCI datasets
(gathered from OpenML (Vanschoren et al., 2014)), vehicle registration (Siebert,
1987) and forest cover types (Blackard and Dean, 1999) with more than 50000
data points. Training SVMs on these datasets can take several hours, and Figure
6 shows that Fabolas found good configurations for them between 10 and 1000
times faster than the other methods. On the other hand, both Fabolas and
MTBO sometimes converged more slowly to the true optimum after their initial
improvement. This could be a consequence of the GP model and the respective
assumptions about the correlation across dataset sizes. Hyperband constitutes a
very competitive optimizer on these benchmarks; the super-linear complexity of
the SVM and lower cost of good configurations allow Hyperband to recommend
its first incumbent faster than the BO methods operating on the full data set.

Table 1

Hyperparameters for all support vector machine tasks.

Hyperparameter lower bound upper bound log

Regularization C e−10 e10 X
Kernel parameter γ e−10 e10 X

6.3. Convolutional neural networks

Convolutional neural networks (CNNs) have shown superior performance on
a variety of computer vision and speech recognition benchmarks, but finding
good hyperparameter settings remains challenging, and almost no theoretical
guarantees exist. Tuning CNNs for modern, large datasets is often infeasible

4962 A. Klein et al.

Fig 7. Test performance of a convolutional neural network on CIFAR10 (left) and SVHN
(right).

via standard Bayesian optimization; in fact, this motivated the development of
Fabolas.

We experimented with hyperparameter optimization for CNNs on two well-
established object recognition datasets, namely CIFAR10 (Krizhevsky, 2009)
and SVHN (Netzer et al., 2011). We used the same setup for both datasets
(a CNN with three convolutional layers, with batch normalization (Ioffe and
Szegedy, 2015) in each layer, optimized using Adam (Kingma and Ba, 2014)).
We considered a total of five hyperparameters: the initial learning rate, the
batch size and the number of units in each layer (see Table 2).

Table 2

Hyperparameters for the convolutional neural network task.

Hyperparameter lower bound upper bound log

Initial learning rate 10−6 100 X
Batch size 32 512
units layer 1 24 28 X
units layer 2 24 28 X
units layer 3 24 28 X

For CIFAR10, we used 40000 images for training, 10000 to estimate valida-
tion error, and the standard 10000 hold-out images to estimate the final test
performance of incumbents. For SVHN, we used 6000 of the 73257 training im-
ages to estimate validation error, the rest for training, and the standard 26032
images for testing.

The results in Figure 7 show that—compared to the SVM tasks—Fabolas’
speedup was smaller because CNNs scale linearly in the number of datapoints.
Nevertheless, it found good configurations about 10 times faster than vanilla
Bayesian optimization. For the same reason of linear scaling, Hyperband was
substantially slower than vanilla Bayesian optimization to make a recommen-
dation, but it did find good hyperparameter settings when given enough time.

Fast Bayesian hyperparameter optimization on large datasets 4963

Fig 8. Validation performance of a residual network on CIFAR10.

6.4. Residual neural networks

In the final experiment, we evaluated the performance of our method further
on a more expensive benchmark, optimizing the validation performance of a
deep residual network on the CIFAR10 dataset, using the original architecture
from He et al. (2015). As hyperparameters we exposed the learning rate, L2

regularization, momentum and the factor by which the learning rate is multiplied
after 41 and 61 epochs (see Table 3).

Table 3

Hyperparameters for the deep residual network task.

Hyperparameter lower bound upper bound log

Learning rate 10−6 1 X
L2 regularization 10−6 1 X
Learning rate factor 10−4 1 X
Momentum 0.1 0.999

Figure 8 shows that Fabolas found configurations with reasonable perfor-
mance roughly 10 times faster than ES and MTBO. As in the previous convo-
lutional neural network experiment Hyperband’s first recommendation for an
incumbent takes longer than for the Bayesian optimization methods. However,
after the first round of successive halving it already found a very good configu-
ration and only improves slightly in the next iterations.

7. Conclusion

We presented Fabolas, a new Bayesian optimization method based on Entropy
Search that mimics human experts in evaluating algorithms on subsets of the

4964 A. Klein et al.

data to quickly gather information about good hyperparameter settings. Fabo-
las extends the standard way of modelling the objective function by treating
the dataset size as an additional continuous input variable. This allows the in-
corporation of strong prior information. It models the time it takes to evaluate a
configuration and aims to evaluate points that yield—per time spent—the most
information about the globally best hyperparameters for the full dataset. In var-
ious hyperparameter optimization experiments using support vector machines
and deep neural networks, Fabolas often found good configurations 10 to 100
times faster than the related approach of Multi-Task Bayesian optimization,
Hyperband and standard Bayesian optimization. Our open-source code is avail-
able at https://github.com/automl/RoBO, along with scripts for reproducing
our experiments.

In future work, we plan to expand our algorithm to model other environmen-
tal variables, such as the resolution size of images, the number of classes, and
the number of epochs, and we expect this to yield additional speedups. Since our
method reduces the cost of individual function evaluations but requires more
of these cheaper evaluations, we expect the cubic complexity of Gaussian pro-
cesses to become the limiting factor in many practical applications. We therefore
plan to extend this work to other model classes, such as Bayesian neural net-
works (Neal, 1996; Hernández-Lobato and Adams, 2015; Blundell et al., 2015;
Springenberg et al., 2016; Klein et al., 2017b), which may lower the computa-
tional overhead while having similar predictive quality.

Acknowledgments

This work has partly been supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
under grant no. 716721, by the European Commission under grant no. H2020-
ICT-645403-ROBDREAM, and by the German Research Foundation (DFG)
under Priority Programme Autonomous Learning (SPP 1527, grant BR 3815/8-
1 and HU 1900/3-1).

References

A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian opti-
mization of machine learning hyperparameters on large datasets. 2017a.

G. Montavon, G. Orr, and K.-R. Müller, editors. Neural Networks: Tricks of the
Trade - Second Edition. LNCS. Springer, 2012.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
and K. Weinberger, editors, Proceedings of the 25th International Confer-
ence on Advances in Neural Information Processing Systems (NIPS’11), pages
2546–2554, 2011.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In C. Coello, editor, Proceedings of

https://github.com/automl/RoBO

Fast Bayesian hyperparameter optimization on large datasets 4965

the Fifth International Conference on Learning and Intelligent Optimization
(LION’11), volume 6683 of Lecture Notes in Computer Science, pages 507–
523. Springer-Verlag, 2011. MR2470700

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13:281–305, 2012. MR2913701

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of
machine learning algorithms. In P. Bartlett, F. Pereira, C. Burges, L. Bot-
tou, and K. Weinberger, editors, Proceedings of the 26th International Con-
ference on Advances in Neural Information Processing Systems (NIPS’12),
pages 2960–2968, 2012.

R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyperparameter
tuning. In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th
International Conference on Machine Learning (ICML’13), pages 199–207.
Omnipress, 2014.

J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyper-
parameter optimization in hundreds of dimensions for vision architectures.
In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML’13), pages 115–123. Omni-
press, 2014.

K. Swersky, J. Snoek, and R. Adams. Multi-task Bayesian optimization.
In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger,
editors, Proceedings of the 27th /ginsInternational Conference on Advances
in Neural Information Processing Systems (NIPS’13), pages 2004–2012,
2013.

K. Swersky, J. Snoek, and R. Adams. Freeze-thaw bayesian optimization.
arXiv:1406.3896, 2014.

J. Snoek, K. Swersky, R. Zemel, and R. Adams. Input warping for Bayesian
optimization of non-stationary functions. In E. Xing and T. Jebara, edi-
tors, Proceedings of the 31th International Conference on Machine Learning,
(ICML’14), pages 1674–1682. Omnipress, 2014.

J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Pat-
wary, Prabhat, and R. Adams. Scalable Bayesian optimization using deep
neural networks. In F. Bach and D. Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning (ICML’15), volume 37, pages
2171–2180. Omnipress, 2015.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic hyper-
parameter optimization of deep neural networks by extrapolation of learn-
ing curves. In Q. Yang and M. Wooldridge, editors, Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJCAI’15), pages
3460–3468, 2015.

L. Bottou. Stochastic gradient tricks. In Grégoire Montavon, Genevieve B. Orr,
and Klaus-Robert Müller, editors, Neural Networks, Tricks of the Trade,
Reloaded. Springer, 2012.

K. Kandasamy, G. Dasarathy, J. Oliva, J. Schneider, and B. Póczos. Gaus-

http://www.ams.org/mathscinet-getitem?mr=2470700
http://www.ams.org/mathscinet-getitem?mr=2913701

4966 A. Klein et al.

sian process optimisation with multi-fidelity evaluations. In Proceedings of
the 30th /International Conference on Advances in Neural Information Pro-
cessing Systems (NIPS’30), 2016.

M. U. Gutmann and J. Corander. Bayesian optimization for likelihood-free in-
ference of simulator-based statistical models. Journal of Machine Learning
Research, 17(125):1–47, 2016. MR3555016

T. Nickson, M. A Osborne, S. Reece, and S. Roberts. Automated machine learn-
ing on big data using stochastic algorithm tuning. CoRR, 2014.

T. Krueger, D. Panknin, and M. Braun. Fast cross-validation via sequential
testing. JMLR, 2015. MR3417778

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyper-
band: Bandit-based configuration evaluation for hyperparameter optimiza-
tion. In Proceedings of the International Conference on Learning Representa-
tions (ICLR’17), 2017. Published online: iclr.cc.

P. Hennig and C. Schuler. Entropy search for information-efficient global opti-
mization. Journal of Machine Learning Research, 98888(1):1809–1837, 2012.
MR2956343

E. Brochu, V. Cora, and N. de Freitas. A tutorial on Bayesian optimization
of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv:1012.2599, 2010.

B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. de Freitas. Taking the
human out of the loop: A review of Bayesian optimization. Proceedings of the
IEEE, 104(1):148–175, 2016.

J. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with
robust bayesian neural networks. In D. Lee, M. Sugiyama, U. von Luxburg,
I. Guyon, and R. Garnett, editors, Proceedings of the 30th International Con-
ference on Advances in Neural Information Processing Systems (NIPS’16),
2016.

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The
MIT Press, 2006. MR2514435

B. Matérn. Spatial variation. Meddelanden fran Statens Skogsforskningsinstitut,
1960. MR0169346

D. J. C. MacKay and R. M. Neal. Automatic relevance detection for neural
networks. Technical report, University of Cambridge, 1994.

J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian meth-
ods for seeking the extremum. Towards Global Optimization, 2(117–129),
1978.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization
in the bandit setting: No regret and experimental design. In J. Fürnkranz
and T. Joachims, editors, Proceedings of the 27th International Conference
on Machine Learning (ICML’10), pages 1015–1022. Omnipress, 2010.

J. Hernández-Lobato, M. Hoffman, and Z. Ghahramani. Predictive entropy
search for efficient global optimization of black-box functions. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Pro-
ceedings of the 28th International Conference on Advances in Neural Infor-
mation Processing Systems (NIPS’14), 2014.

http://www.ams.org/mathscinet-getitem?mr=3555016
http://www.ams.org/mathscinet-getitem?mr=3417778
iclr.cc
http://www.ams.org/mathscinet-getitem?mr=2956343
http://www.ams.org/mathscinet-getitem?mr=2514435
http://www.ams.org/mathscinet-getitem?mr=0169346

Fast Bayesian hyperparameter optimization on large datasets 4967

Thomas P. Minka. Expectation propagation for approximate Bayesian inference.
In Proceedings of the 30th conference on Uncertainty in Artificial Intelligence
(UAI’01). Morgan Kaufmann Publishers Inc., 2001.

J. Cunningham, P. Hennig, and S. Lacoste-Julien. Approximate gaussian
integration using expectation propagation. pages 1–11, January 2012.
MR1576213

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learn-
ing applied to document recognition. In S. Haykin and B. Kosko, edi-
tors, Intelligent Signal Processing, pages 306–351. IEEE Press, 2001. URL
http://www.iro.umontreal.ca/~lisa/pointeurs/lecun-01a.pdf.

A. Klein, S. Bartels, S. Falkner, P. Hennig, and F. Hutter. Towards efficient
bayesian optimization for big data. In NIPS 2015 Bayesian Optimization
Workshop, December 2015.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Efficient
hyperparameter optimization and infinitely many armed bandits. 2016.

K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hy-
perparameter optimization. In Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics (AISTATS), 2016.

B. Williams, T. Santner, and W. Notz. Sequential design of computer exper-
iments to minimize integrated response functions. Statistica Sinica, 2000.
MR1804554

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. emcee: The
MCMC Hammer. PASP, 2013.

D. R. Jones. A taxonomy of global optimization methods based on response
surfaces. Journal of Global Optimization, 21:345–383, 2001. MR1869398

Peter Sollich. Gaussian process regression with mismatched models. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Infor-
mation Processing Systems 14. MIT Press, 2002.

K. Eggensperger, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Efficient
benchmarking of hyperparameter optimizers via surrogates. In B. Bonet and
S. Koenig, editors, Proceedings of the Twenty-nineth National Conference on
Artificial Intelligence (AAAI’15), pages 1114–1120. AAAI Press, 2015.

J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science
in machine learning. SIGKDD Explor. Newsl., 15(2):49–60, June 2014.

J. P. Siebert. Vehicle Recognition Using Rule Based Methods. Turing Institute,
1987.

J. A. Blackard and D. J. Dean. Comparative accuracies of artificial neural net-
works and discriminant analysis in predicting forest cover types from carto-
graphic variables. Comput. Electron. Agric., 1999.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits
in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011, 2011.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In F. Bach and D. Blei, editors, Proceed-
ings of the 32nd International Conference on Machine Learning (ICML’15),
volume 37. Omnipress, 2015.

http://www.ams.org/mathscinet-getitem?mr=1576213
http://www.iro.umontreal.ca/~lisa/pointeurs/lecun-01a.pdf
http://www.ams.org/mathscinet-getitem?mr=1804554
http://www.ams.org/mathscinet-getitem?mr=1869398

4968 A. Klein et al.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. CoRR, 2015.

R. Neal. Bayesian learning for neural networks. PhD thesis, University of
Toronto, 1996.

J. Hernández-Lobato and R. Adams. Probabilistic backpropagation for scalable
learning of Bayesian neural networks. In F. Bach and D. Blei, editors, Proceed-
ings of the 32nd International Conference on Machine Learning (ICML’15),
volume 37. Omnipress, 2015.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty
in neural network. In F. Bach and D. Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning (ICML’15), volume 37, pages
1613–1622. Omnipress, 2015.

A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter. Learning curve pre-
diction with Bayesian neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR’17), 2017b. Published online:
iclr.cc.

iclr.cc

	Introduction
	Bayesian optimization
	Gaussian processes
	Acquisition functions
	Entropy search

	Reasoning across dataset subsets
	Previous work
	Multi-task Bayesian optimization
	Hyperband

	Fabolas
	Modelling loss and computational cost
	Algorithm description
	Initial design
	Implementation details
	Heteroscedastic noise

	Experiments
	Support vector machine surrogate
	Support vector machines
	Convolutional neural networks
	Residual neural networks

	Conclusion
	Acknowledgments
	References

