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Abstract

In multi-agent path finding (MAPF), it is usually assumed that plan-
ning is performed centrally and that the destinations of the agents are
common knowledge. We will drop both assumptions and analyze under
which conditions it can be guaranteed that the agents reach their respec-
tive destinations using implicitly coordinated plans without communica-
tion. Furthermore, we will analyze what the computational costs associ-
ated with such a coordination regime are. As it turns out, guarantees can
be given assuming that the agents are of a certain type. However, the
implied computational costs are quite severe. In the distributed setting,
we either have to solve NP-complete problems or have to tolerate expo-
nentially longer executions. In the setting with destination uncertainty,
plan existence becomes PSPACE-complete. This clearly demonstrates the
value of communicating about plans before execution starts.

1 Introduction

In a spatial multi-agent environment, e.g., a warehouse [31], a street intersection
[11], an airport ground-traffic scenario [19], or a video game [22], agents have to
move to different destinations in a collision-free manner. Such scenarios can be
formalized as multi-agent path finding (MAPF) problems.

In its most basic variant, the problem can be described as follows. Given a
(perhaps directed) graph G = (V,E), a set of agents A, an initial configuration
assigning agents to distinct vertices, and a final configuration with another
assignment of agents to distinct vertices, the question is how one can transform
the initial configuration into the final one by single movements, where one agent
moves from a vertex to an empty adjacent vertex.

Often, the graph is given as a grid map as in in Figure 1, where agents can
move to orthogonally adjacent empty grid cells. In the displayed situation, the
circular agent C wants to go to the cell marked by the solid circle and the square
agent S wants to reach the place with the solid square (the empty circle and
square will only become important later). One could come up with the following
movements:
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v1 v2 v3

v4

Figure 1: Multi-agent coordination example

1. C moves to v2 and then to v4,

2. S moves to v2 and then to destination field v3, and

3. C finally moves to destination field v2.

This problem, and a number of variants, have been studied quite exten-
sively, the computational complexity of these problems has been determined,
and a number of optimal and sub-optimal algorithms have been proposed. The
assumption has usually been that movements are computed centrally before
execution starts. Furthermore, because of this assumption, destinations are
considered to be common knowledge. In this paper we drop both assumptions
and analyze whether the agents are able to coordinate their movements just by
observing the movements of the other agents. Such a scenario is, for instance,
plausible in human-robot interactions or when agents do not share a common
communication channel.

As a first step, we consider in Section 2 planning as well as execution as dis-
tributed with no communication between the agents. In order to cope with the
problem that the generated movement plans might be incompatible, replanning
might be necessary. The question is then whether it is still possible to guaran-
tee successful executions and what the computational price for such implicitly
coordinated executions is. As we show, success guarantees can be given, if we
assume all agents to be eager, i.e., not waiting for others to act first, and acting
optimally. This result follows from more general results in epistemic planning
[5]. Based on known complexity results concerning solving MAPF optimally,
it follows that the planning problem in such an implicitly coordinated regime
is NP-complete. As an alternative we explore the notion of conservative eager
agents which start replanning from the initial situation following the already
executed partial plan. While these agents do not need to solve NP-complete
problems and can avoid infinite executions at the same time, the worst-case ex-
ecution length can be exponentially longer than the length of a plan by a single
agent.

As a second step, in Section 3 we drop the assumption that destinations are
common knowledge. We call the resulting path-finding problem MAPF under
destination uncertainty or simply MAPF/DU. In order to illustrate this point,
let us again consider the situation in Figure 1, but unlike before, let us assume
that each agent knows about its own destination with certainty (the solid circle
and square), but there is uncertainty about the destinations of the other agent
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(the empty circle and square are considered as additional potential destinations
in addition to the solid circle and square for C and S, respectively).

Here, we first have to come up with a solution concept. We introduce i-strong
branching plans that correspond to implicitly coordinated policies as they have
been proposed in the area of epistemic planning [12]. One interesting property
of these plans is that one can reduce them to skeletons that are composed out
of stepping stones, configurations in which one agent can reach its destination
with certainty and success for the rest is guaranteed. Using this result, one can
show that the worst-case execution cost of a branching plan for a MAPF/DU
instance is polynomially bounded.

As a third step, in Section 4, we analyze joint execution of these branching
plans as a generalization of joint executions for the fully observable case. Since
the agents now have different perspectives, it can happen that some agents can
come up with an i-strong plan while others are clueless, i.e., cannot form a plan.
So, we introduce the stronger notion of objectively strong plans, which can be
executed by any agent.

As in the fully observable setting, conservative eager agents are guaranteed
to succeed, however, executions can have a length exponentially longer than a
plan by a single agent. Since we also want to guarantee reasonable execution
length, optimally eager agents are considered. Unfortunately, for them, success
cannot be guaranteed. As we demonstrate, it is possible to get caught in infinite
executions. In order to address this problem, we combine conservative eagerness
with optimality.

In Section 5, we have a look at the computational complexity of deciding
the existence of (bounded) i-strong and objectively strong plans. We show
that these problems are PSPACE-complete (in the number of agents). This
demonstrates that communication about destinations pays off significantly. For
the case that we deal only with few agents, we show that deciding existence and
bounded existence for a fixed number of agents is polynomial.

In Section 6, we review related work and in Section 7 we summarize our
results.

2 Distributed MAPF

As mentioned in the Introduction, the spatial environment is modeled using a
graph G = (V,E). Throughout the paper, we consider the most general case of
a directed graph. A configuration of agents A on the graph G is an injective
function α : A→ V . For i ∈ A and v ∈ V , by α[i/v] we refer to the function that
has the same values for all j 6= i as α, but for i it has the value v: α[i/v](i) = v.

Given a movement action of agent i from v to v′ and a configuration
α, a successor configuration α′ = α[i/v′] is generated, provided α(i) = v,
(α(i), α′(i)) ∈ E, and there exists no j with α(j) = v′. The MAPF problem
is then to generate for a given MAPF instance M = 〈A,G, α0, α∗〉 with a
given set of agents A, a given graph G, the initial configuration α0, and
the final configuration α∗, a sequence of movements from α0 to α∗. Such a
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movement plan π is written as a sequence of movement triples consisting of
the moving agent i and its current and next location: (i, α(i), α′(i)). We always
assume that such movement plans are cycle-free , i.e., that during the execution
of such a plan no configuration is reached twice. We call a plan successful for
a MAPF instance if it transforms α0 into α∗. Since in the following we only
consider successful movement plans, we just call them plans. If there exists
such a plan for a given instance, we call the instance solvable .

As Kornhauser et al. [21] have shown, solvability on undirected graphs can be
decided in polynomial time; and if a plan exist, then its length can be bounded
by a polynomial and it can be generated in polynomial time. For the general-
ization to directed graphs, Botea and Surynek [6] have shown that these bounds
are still valid. If we are interested in shortest plans, then the corresponding
problem of bounded existence for undirected graphs becomes NP-complete, as
has been shown by Ratner and Warmuth [23]. As is easy to see, this also holds
for the case of directed graphs.

2.1 Distributed Planning and Execution

While in MAPF one usually considers the generation of a plan by a central
instance and leaves the distributed execution to the agents, we now consider the
setting where each agent generates a plan—consisting of its own movements and
the movements of the other agents, leading to the goal configuration. We call
such a plan implicitly coordinated since the planning agent presupposes that
the other agents behave in a cooperative way. The underlying basic assumption
is, of course, that all agents want to reach the goal configuration. But it would
be a coincidence when all of them came up with the same plan. Nevertheless,
if one agent acts, this will follow a plan towards the goal configuration—and so
will never end up in a dead end. And if an action was not anticipated by other
agents, then they can replan in order to account for this unanticipated move.

After all agents have planned, we have a family of plans (πi)i∈A. Joint
execution of this family of plans is then performed in an asynchronous, in-
terleaved fashion. From all the agents i that have as their first action one of
their own moves, one agent is chosen and its movement is executed. For all
the other agents the following happens: Either the movement was anticipated
and then the movement is removed from the plan or the agent has to replan
from the new situation. The interesting question is, whether such an asyn-
chronous, distributed execution is guaranteed to eventually lead to the desired
goal configuration.

In the example from the Introduction, everything will probably work out.
Assume that the initial plan by agent C is the sketched one, i.e., the plan πC
in Figure 2. Now agent S might have generated the same plan, in which case
both agents will reach their destinations. What will happen, however, if S had
chosen a different plan? If agent S had generated a different plan, say πS in
Figure 2, then it may happen that C will be chosen to execute the first action
and S is forced to replan. In this case, it might come up with πC with the first
action removed. If, on the other hand, S is chosen to act first, C needs to replan
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v1 v2 v3

v4

πC = 〈(C, v3, v2), (C, v2, v4), (S, v1, v2), (S, v2, v3), (C, v4, v2)〉
πS = 〈(S, v1, v2), (S, v2, v4), (C, v3, v2), (C, v2, v1), (S, v4, v2), (S, v2, v3), (C, v1, v2)〉

Figure 2: Plans for the multi-agent coordination example

and might come up with πS with the first action removed, and joint execution
will be successful.

2.2 Success Guarantees for Joint Execution

The interesting question is, whether we can find conditions that guarantee suc-
cess for such joint executions with replanning in the general case. In order to
demonstrate one of the issues, let us assume that S comes up with the plan πC
(expecting C to act first), and that C comes up with πS (expecting S to act
first). In this case, both agents would wait for each other to act first forever.

Let π be a movement plan. We say that π is a lazy plan with respect to
agent i and a given class Π of plans, if there exists another movement plan
π′ ∈ Π that has an identical prefix of k ≥ 0 actions and the k + 1th in π is a
movement by agent j 6= i, while the k + 1th action in π′ is by agent i. We say
that i is a lazy agent (wrt. Π) if it sometimes generates lazy plans. Clearly,
lazy agents can produce plans that can lead to deadlock situations as in the
scenario described above [5].

We call i an eager agent if it never generates lazy plans (with respect to
itself and the given class of plans). Note that if a plan is not lazy, then all of its
suffixes started in the situation reached by the prefix are also not lazy (provided
the suffixes also belong to the class of plans). The reason is that there does not
exist any prefix such that after the prefix the agent unnecessarily chooses an
action of another agent.

With eager agents, we avoid deadlock situations, since there is always at
least one agent that can act, as has been shown for the more general setting of
epistemic planning [5]. In particular, if both S and C from our initial example
are eager, then C is bound to generate πC and S will necessarily generate πS ,
leading to a successful execution, since there are no other possible movement
plans.

However, simple eager agents (being eager with respect to the class of all
cycle-free plans) have serious problems. The first problem is that eager agents
may plan to make unnecessary moves, even when choosing a movement of an-
other agent could lead to a shorter plan. The second problem, resulting from
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v1 v2 v3

v4

v5v6v7

v8

π1 (S initially): 〈(S,v2,v3), (S, v3, v4), (S, v4, v5), (C, v6, v7), (S, v5, v6),
(C, v7, v8), (C, v8, v1), (C, v1, v2)〉

π2 (C initially): 〈(C, v6, v5), (C, v5, v4), (C, v4, v3), (S, v2, v1), (C, v3, v2),
(S, v1, v8), (S, v8, v7), (S, v7, v6)〉

π3 (C after (S, v2, v3)): 〈(C,v6,v5), (C, v5, v4), (S, v3, v2), (C, v4, v3), (S, v2, v1),

(C, v3, v2), (S, v1, v8), (S, v8, v7), (S, v7, v6)〉
π4 (S after (C, v6, v5)): 〈(S,v3,v2), (S, v2, v1), (S, v1, v8), (S, v8, v7), (S, v7, v6),

(C, v5, v4), (C, v4, v3), (C, v3, v2)〉
π5 (C after (S, v3, v2)): 〈(C,v5,v6), (C, v6, v7), (C, v7, v8), (C, v8, v1), (S, v2, v3),

(C, v1, v2), (S, v3, v4), (S, v3, v5), (S, v5, v6)〉

Figure 3: Example for infinite execution

the first one, is that joint execution with replanning can easily lead to infinite
executions, as demonstrated in Figure 3. Initially, S and C come up with the
two plans π1 (going around clockwise) and π2 (going around couter-clockwise),
respectively. As one can easily verify, both plans are not lazy wrt. the respective
agents. Now S starts to execute (moving from v2 to v3). After that C has to
replan (since C did not anticipate S’s move). It comes up with π3 inserting an
action into the original plan π2 that undoes S’s action (without leading to a
cycle in the revised plan). Note that the resulting plan is again not lazy for C
(since C acts first until S has to move out of the way). Now, assume that C
executes the first action from π3. Since C is not following S’s plan, S comes up
with a new plan π4 going around counter-clockwise. After executing the first
action of π4, C needs again to replan because the executed action deviates from
C’s plan π3. So it comes up with π5 (going around clockwise), which leads to
the original configuration, if the first action of it is executed. From this situa-
tion on, they can repeat this forever. Note that by revising the plans, we have
created a cycle in the actual execution, although every plan itself is cycle-free.

The problem can be addressed by restricting the class of plans Π to shortest
plans. We call a plan optimally eager with respect to agent i if it is not lazy
with respect to agent i and the class of shortest plans. Agents producing only
such plans are called optimally eager agents [5]. As is easy to see, such
agents are always successful, provided the instance is solvable at all, as spelled
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out in the next Proposition.1 The reason is that all agents produce plans of the
same length, which in each execution step are shortened.

Proposition 1 For MAPF instances, joint execution and replanning of move-
ment plans generated by optimally eager agents is always successful, provided
the instance is solvable.

This means that a form of implicit coordination can be achieved by observa-
tion and replanning under the assumption that everybody acts rationally in the
sense that only shortest plans are considered. In our example from Figure 3,
for instance, C will replan to move clockwise after the first move of S mov-
ing clockwise. Actually, this should not come as surprise. If the only form of
“communication” we allow is the actions of the other agents, then these actions
should in some way reveal the underlying strategy of the agent. Simple eager
agents are not very helpful in this respect, because some of their actions might
just be unnecessary. Optimally eager agents, however, express with each action
execution that their action is a part of an optimal plan. And this can then be
used to anticipate the continuation.

While this is good news, the bad news is that this implies that the agents
have to solve an NP-complete problem not only once, but potentially after each
action execution. And the question may come up whether a computationally
simpler version would be possible.

Instead of trying to find the shortest plan in order to avoid infinite execu-
tions, one can restrict replanning in a way such that already executed actions
have to be part of an updated plan. In other words, when an agent has to
replan, it creates the plan from the initial configuration α0 and starts with the
already executed actions.2 Agents that replan in this way are called conser-
vative agents. An agent is a conservative eager agent if it is eager with
respect to the agent and the class of plans containing the already executed plan
as a prefix.

This way, one never will create a cyclic execution (since we assumed that
plans are never cyclic), hence, executions are always finite. Note that this con-
dition will never lead to a dead end, because an acting agent has always a valid
plan to reach the goal configuration. Furthermore, this positive result does not
depend on generating shortest plans, so we are not forced to solve NP-complete
problems. Unfortunately, however, the polynomial upper bound for the number
of movements goes out of the window. In fact, it is easy to construct an example
where the entire (exponentially sized) state space is visited. This means, agents
also have to remember exponentially many steps. Such an example is shown in
Figure 4, where dots are empty nodes, boxes denote agents occupying a node,
and destinations for the agents are specified after node names separated by a
colon. Bidirectional arcs do not have an arrow.

In this example, each agent ai wants to move from its initial location vi,1 to
its destination vi,2. An eager plan for agent a1 could look like as follows. Agent

1Note that this a special case of Proposition 9 in the paper by Bolander et al. [5].
2This is very similar to tabu search [14] with an unlimited tabu list.
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a1

v1,1
a2

v2,1
a3

v3,1
an

vn,1

v1,2 : a1 v2,2 : a2 v3,2 : a3 vn,2 : an

Figure 4: Example, which may result in an exponentially long execution

a1 moves down to v1,2. Since cycles are not allowed, now another agent has to
move move, say a2. After that, a1 needs to move again (because it is eager),
and then a3 could move to its destination. All in all, the shortest eager plan
will have a length of 2n− 1 if n is odd and 2n− 2 if n is even. When it comes
to the joint execution, however, it could happen that the order of execution is
chosen in way that corresponds to the bit change in a Gray counter [18]. In
this case, the corresponding agents will always move (since they are eager) and
they will explore the entire state space of 2n states before they stop in the goal
configuration.

Proposition 2 For MAPF instances, joint execution and replanning of move-
ment plans generated by conservative eager agents is always successful, provided
the instance is solvable. However, executions can have a length exponentially
longer than the plan by a single agent.

Thus, it appears to be the case that when communication between the agents
in the form of publishing a common plan is not possible, one has to tolerate high
worst-case computational costs, either in form of solving NP-complete problems
or in producing and remembering potentially exponentially long plans. One
might hope that there is some middle ground between these two extremes.
However, avoiding NP-completeness and exponential executions is probably
only possible by using a polynomial approximation algorithm with guaranteed
bounds for the MAPF problem. And we are not aware of any such algorithm.

3 MAPF with Destination Uncertainty

Let us generalize the MAPF problem to a setting where the agents are only
partially informed about the destinations of the other agents. This means that
the goal configuration α∗ is not common knowledge any longer, but only the
agent itself knows its own goal. Common knowledge are the possible destinations
for each agent, formalized by a destination function β : A → 2V , with the
constraint that for all i ∈ A either the real destination is among the possible
ones, i.e., α∗(i) ∈ β(i), or there is no destinations to be reached, i.e., β(i) = ∅,
because the agent already arrived. We require further that all combinations of
possible destinations are consistent, i.e., β(i) ∩ β(j) = ∅ for all i 6= j ∈ A.3 We,

3Without this constraint, we either would allow for inconsistent potential goal configura-
tions or, excluding them, we would introduce a form of disjunction over goal configurations
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of course, still assume that all agents are cooperative, i.e., that they want to
reach the goal configuration α∗.

Furthermore, we add a success announcement action for each agent. This
action can be executed when the agent has reached its destination. Only by
using such an action, the agents can establish common knowledge that they
all have reached their respective destinations. In order not to trivialize the
problem, we require that after the announcement the agent is not allowed to
move anymore. However, an agent might visit its true destination without
revealing it. We call this variation of the MAPF problem the multi-agent
path-finding with destination uncertainty or MAPF/DU problem.

3.1 State Space and Solution Concept

In the original MAPF problem, the state space for the planning process is simply
the space of all configurations α of the agents in the graph. For the MAPF
problem with destination uncertainty we also have to take into account the
possible belief states of all the agents. For this reason, we have to make the
possible destination function part of the state space as well, i.e., an objective
state is now the tuple s = (α, β), which captures the common knowledge of all
agents.

A MAPF/DU instance MDU = 〈A,G, s0, α∗〉 is given by the set of agents
A, the graph G = (V,E), the initial objective state s0 = (α0, β0), and the final
configuration α∗. Movement actions change the configuration α, while success
announcements change the destination function β. If an agent i makes a success
announcement while being in location v, we change the destination function to
β[i/∅], signaling that the agent has reached its destination and is not allowed to
move anymore.4 The goal state is reached if for all agents i, α(i) = α∗(i) (the
destination has been reached) and β(i) = ∅ (success has been announced).

When an agent i is starting to generate a plan, the agent knows, of course, its
true destination α∗(i). The subjective view of the world is captured by the tuple
(α, β, i, α∗(i)), which we call subjective state of agent i. Given a subjective
state (α, β, i, α∗(i)), we call (α, β) the corresponding objective state . Using
its subjective state, agent i can plan to make movements that eventually will
lead to a goal state. Most probably, it will be necessary to plan for other agents
to move out of the way or to move to their destination. So, the planning agent
has to put itself into the shoes of another agent j: i must make a perspective
shift taking j’s view. Since i does not know the true destination of j, i must
take all possibilities into account and plan for all of them. In other words, i
must plan for j using all possible subjective states of j: sjv = (α, β, j, v) for
v ∈ β(j). When planning for each possible destination of j, the planning agent
i must pretend not to know the true destination of itself because it plans with
the knowledge of agent j, which is uncertain about i’s destinations.

concerning more than one agent. By that, the analysis of the problem would become much
more involved, leading to complications with perspective shifting and the reduction to stepping
stones as spelled out in Lemma 4.

4We assume that all such announcements are truthful.
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All in all, a plan in the context of MAPF with destination uncertainty is no
longer a linear sequence, but a branching plan. Furthermore, it is not enough
to reach the true goal state, but the plan has to be successful for all possible
destinations of all the agents (except for the starting agent i). Such a branching
plan is formally defined as follows. Let aik be an atomic action by agent i.
This can be a movement action , as before, i.e., (i, x, y) for agent i moving
from x to y. In addition, there are success announcement actions by agent
i, denoted by (i,S). Using atomic actions aik by agent i, one can form a (perhaps
empty) sequence :

σi ::= ai1, . . . , a
i
n, n ≥ 0.

A branching plan π is now such a sequence σi, followed perhaps by a perspective
shift δj to agent j:

π ::= σi | σiδj ,

with
δj ::= [j : (?vj1 : πj

1, . . . , ?v
j
m : πj

m)] | [j : πj ].

In the former case, one branches according to the possible destinations of j:
β(j) = {vj1, . . . , vjm}, i.e., agent i considers all destination possibilities for agent
j. We call such a perspective shift branching point of the plan. In the
latter case, the perspective is shifted to agent j, but no split on the possible
destinations of j is performed.

We call a branching plan well-formed if for any sequence σi, only agent i
is acting and if for each perspective shift δj , the split is either on all possible
destinations of j or the shift is unconditional. Plans of this kind correspond
roughly to what has been termed policy in the more general context of implicitly
coordinated epistemic planing [5, 12], and we will only consider such well-formed
plans in the following.

An execution trace of a branching plan π is a sequence of basic actions
and destination assumptions of the form (i : vi) for agent i with destination
vi. An execution trace of the plan π = σi is formed by the sequence σi of
basic actions. If the plan contains also a perspective shift, i.e., π = σiδj , and
δj = [j : (?vj1 : πj

1, . . . , ?v
j
m : πj

m)], then one execution trace of π is σi followed

by the destination assumption (j : vk), followed by an execution trace of πj
k, for

some k ∈ {1, . . . ,m}. If we have an unconditional perspective shift δj = [j : πj ],
then we use the destination assumption (j : ⊥), i.e., j does not make any
assumption about its destination.

The subjective semantics of an execution trace is defined by transforming
the subjective state of the acting agent i. Given a graph G = (V,E), a subjec-
tive state si = (α, β, i, v) and an execution trace χ of a plan π, we define the
subjective outcome of executing χ in si as follows:

sexec(si, χ) =

{
si, if χ = 〈 〉
sexec(sexec(si, a), χ′), if χ = a;χ′.

(1)
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The subjective outcome of executing a single action a is then defined as:

sexec((α, β, i, w), a) =



(α[i/v′], β, i, w) if a = (i, v, v′),
β(i) 6= ∅,
α(i) = v, (v, v′) ∈ E,
and there is no j : α(j) = v′,

(α, β[i/∅], i, w), if a = (i,S) and α(i) = w,
(α, β, j, v) if a = (j : v),
undefined otherwise.

(2)

An execution trace is called successful if its outcome is defined and in the
resulting state it is common knowledge that all destinations have been reached,
i.e., β(i) = ∅ for all agents i. We call a plan i-successful , if when started in
the subjective state (α0, β0, i, α∗(i)), all its execution traces are successful.

An execution trace is said to be cycle-free if it never visits the same objec-
tive state (α, β) twice. This implies that one could revisit a configuration α if
the uncertainty had been reduced meanwhile. A plan is said to be cycle-free ,
if all of its execution traces are cycle-free.

Furthermore, we call a plan i-covering , if for each configuration α′ with
α′(j) ∈ β(j), for all j, and α′(i) = α∗(i), there exists a successful execution trace
ending in the configuration α′, when execution is started in (α0, β0, i, α∗(i)) .

In analogy to the notion of strongness in planning under partial observability
for one agent [3], we call a branching plan i-strong for an objective state (α, β),
if it is i-covering, i-successful and cycle-free. If such an i-strong plan exists for a
MAPF/DU instanceMDU , thenMDU is said to be i-solvable. Note that in our
setting, i-success already implies i-covering, because we require at all branching
points that the plan branches over all possible destinations of an agent.

Proposition 3 If a plan is i-successful then it is also i-covering.

Proof: Let MDU = 〈A,G, (α0, β0), α∗〉 be a MAPF/DU instance, π be an i-
successful plan, and α′ a configuration such that α′(j) ∈ β(j), for all j, and
α′(i) = α∗(i). Extract an execution trace χ from π by selecting at each branch-
ing point with a perspective shift to agent j the branch corresponding to α′(j).
This is possible since we required that for each perspective shift to agent j,
the split is either on all possible destinations β0(j) or the shift is unconditional
(j : ⊥). Since π is i-successful, χ is successful. Because of the semantics of
success announcements (j,S), agent j can only announce its destination if it
is on the vertex that had been mentioned in the last destination assumption
(j : α′(j)), which implies that in the resulting state of χ, all agents j have
reached their respective destinations α′(j). Since α′ was chosen arbitrarily, this
holds for all possible α′.

In order to illustrate the concept of a branching plan, let us consider a
simplification of our example from the Introduction (see Figure 5). Let us
assume that S moves first to v4. Now S puts itself into the shoes of C and reasons
about what C would do, if v1 is C’s destination, and how C would continue if
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v1 v2

v3v4

Figure 5: Small MAPF/DU example

v4 is C’s destination. In the former case, C moves to v1 and announces that it
has reached its destination. In the other case, it will also move to v1, offering
S the possibility to move to its destination, whether it is v2 or v3. After that,
C could move to its destination. All in all, a branching plan could look as
depicted in Figure 6. A visualization of the branching plan that is much easier

(S, v1, v4), [C: (?v1 : (C, v2, v1), (C,S), [S : (?v2 : (S, v4, v3), (S, v3, v2), (S,S))
(?v3 : (S, v4, v3), (S,S))])

(?v4 : (C, v2, v1), [S : (?v2 : (S, v4, v3), (S, v3, v2), (S,S),
[C: (?v4 : (C, v1, v4), (C,S))

(?v1 : (C,S))])
(?v3 : (S, v4, v3), (S,S),

[C: (?v4 : (C, v1, v4), (C,S))
(?v1 : (C,S))])])].

Figure 6: Branching plan for configuration in Figure 5

to read is the plan tree as depicted in Figure 7. The depicted plan is an S-strong
plan, because all its execution traces lead to states in which all destinations are
common knowledge and all possible destinations of C are covered. Some of
the execution traces look peculiar, though. If we follow the rightmost edges in
Figure 7, we notice that after the move by S, we make the assumption that C’s
destination is v4. Further down in the plan tree, we then make the assumption
that C’s destination is v1. While this sounds inconsistent, and in fact no possible
execution will follow this path, it is nevertheless necessary to consider this case,
because C cannot know what the right assumption is after S has executed the
(S,S) action.

Defining a cost measure for branching plans is not as straight-forward as it
is for linear plans. First of all, we only assign costs to atomic actions and not
to perspective shifts. Second, we are interested in the worst-case costs, i.e., the
longest execution. We define the execution cost of a branching plan to
be the number of atomic actions of the longest execution trace. As mentioned
above, there exists execution traces of a branching plan with inconsistencies
concerning the assumptions about the destinations of the agents as in the right-
most path of the plan in Figure 7. We consider these traces as relevant, though,
because they reflect the belief about possible executions from a subjective point
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(S, v1, v4)

C:

(C, v2, v1) (C, v2, v1)

S:

?v1 ?v4

(C,S) (S, v4, v3)

?v2

(S, v4, v3)

?v3

(S,S)

C:

(C, v1, v4)

?v4

(C,S)

?v1

(C,S)

S:

(S, v4, v3) (S, v4, v3)

?v2 ?v3

(S, v3, v2) (S,S)

(S,S)

(S, v3, v2)

(S,S)

C:

(C, v1, v4)

?v4

(C,S)

(C,S)

?v1

Figure 7: Branching plan depicted as a plan tree

of view.

3.2 Stepping Stones and a Polynomial Cost-Bound

When solving a MAPF/DU instance, one encounters configurations, which are a
great step forward to a solution. In a configuration, where an agent i can reach
all its possible destinations without the necessity that other agents have to move
out of the way, the agent has the freedom to move to its true destination and
announce its success. If one can now guarantee that for each possible destination
of i, the remaining problem can be solved, then one has made a significant step
ahead. We call such situations stepping stone configurations. Formally, an
objective state (α, β) is a stepping stone for i if:
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1. For each v ∈ β(i), the node v can be reached by i from the configuration α
without the necessity that other agents have to move, resulting in α[i/v];

2. for all v ∈ β(i), there exists an i-strong plan from the objective state
(α[i/v], β[i/∅]).

An example for a stepping stone for agent S appears during the execution
of the plan in Figure 7 after having made a perspective shift to C assuming
that the destination is v4 and having executed (C, v2, v1). S can now freely
move to v2 or v3 and in each case the remaining problem is solvable. We
call the perspective shift to agent S and the following movements up to the
announcements a stepping stone utilization . Stepping stone utilization is
actually the backbone for solving MAPF/DU problems. As a matter of fact, a
branching that is not a stepping stone utilization can be simplified, as spelled
out in the next Lemma.

Lemma 4 Let π be an i-strong branching plan for a MAPF/DU instance 〈A,G, (α0, β0), α∗〉
and let π′ = σ[j : (?vj1 : σ1δ1), . . . , (?vjm : σmδm)] be a sub-plan of π, such that
for some k, 1 ≤ k ≤ m, σk does not end in a success announcement action.
Then the plan π∗, where π′ is replaced by σ[j : σkδk], is still an i-strong plan.

Proof: Assume π and π′ as in the proposition. Assume χ is the execution
trace leading to π′. Shifting the perspective to j results in the subjective states
(α, β, j, vl), 1 ≤ l ≤ m.

If β(j) = ∅, then j has already announced success and cannot move anymore.
This means that all σl must be empty (and none of them end in an announce-
ment). Since all execution traces of π are successful starting at the subjective
state of i, all executions traces of δl for all 1 ≤ l ≤ m concatenated to χ must
be successful. So we can simply choose one and replace π′ by σ[j : σkδk], for
any k. The resulting plan will be still i-successful.

If β(j) 6= ∅, then j still has to move to its destination. Let σk be a sequence
not ending in (j,S). This means that σk does not affect β. Since all execution
traces of σkδk concatenated to χ are successful, these traces will lead to β(h) = ∅
for all agents h. So it is enough to use the sub-plan σ[j : σkδk] instead of π′

inside π, resulting in π∗, which is then still i-successful.
Since by removing parts of the plan, we never can add an execution cycle, the

plan will still be cycle-free. Because i-success implies i-covering (Proposition 3),
the resulting plan will still be i-strong.

As an example application of the Lemma, consider again the plan in Figure 7.
The first split on destinations of C is actually not necessary. We could simply
use the right branch unconditionally and prune away the left branch. All in
all, this means that the only necessary branching points in a plan are stepping
stone utilizations.

Theorem 5 (Stepping Stone) Given an i-solvable MAPF/DU instance, there
exists an i-strong branching plan such that the only branching points are stepping
stone utilizations.
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Proof: Assume that the instance is i-solvable and let π be an i-strong plan.
By Lemma 4, all branching points of π that are not stepping stone utilizations
can be removed.

One interesting consequence of the Stepping-Stone Theorem is that if an
instance is solvable, then it is possible to generate a branching plan such that
none of its execution traces will contain inconsistent destination assumptions,
because each execution trace contains only one destination assumption different
from ⊥ for each agent. Another consequence is an upper bound for the execution
costs of branching plans.

Theorem 6 (Polynomial cost bound) If MDU = 〈A, (V,E), (α0, β0), α∗〉
is i-solvable, then there exists an i-strong branching plan with execution cost
bounded by O(|V |4).

Proof: By Theorem 5, we only need to consider branching plans that split on
destinations when it is a stepping stone utilization. This means that each exe-
cution trace proceeds from one stepping stone to the next one. As Kornhauser
et al. [21] have shown, there are at most O(|V |3) many movements necessary
to transform one configuration into another one. So, if there exists any i-strong
branching plan, then, since |A| < |V |, there will be one that has a worst-case
execution trace of length O(|V |4).

4 Joint Execution of MAPF/DU Branching Plans

As in the case with full information, we would like to execute branching plans
jointly and guarantee that we reach the goal state after finitely many steps—
perhaps using replanning on the way. Joint execution should mean here that
all agents follow their plans using their own perspective. In particular, when
an agent i comes to the point where its plan branches according to its own
possible destination, it should follow its private knowledge α∗(i). As in the full
information case, we will assume an asynchronous execution regime, where one
of the agents which wants to act is chosen and its movement or announcement
is executed. Afterwards the other agents follow their original plan, if it is still
compatible, or they have to replan.

In order to make this notion of joint execution more precise, let us first
introduce the notion of an observed action sequence ω, which is the finite
sequence of atomic actions executed by the agents so far. The semantics of such
a sequence is given by the objective outcome of executing ω in objective
state s = (α, β):

oexec(s, ω) =

{
s, if χ = 〈 〉
oexec(oexec(s, a), ω′), if ω = a;ω′,

(3)
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where the objective outcome of executing a in (α, β) is defined as:

oexec((α, β), a) =



(α[i/v′], β) if a = (i, v, v′),
β(i) 6= ∅,
α(i) = v, (v, v′) ∈ E,
and there is no j : α(j) = v′,

(α, β[i/∅]) if a = (i,S),
undefined otherwise.

(4)

Comparing the subjective semantics (Eq. 1–2) with the objective one (Eq. 3–
4), one notes that the only difference is the absence of destination assumptions
in the objective semantics, both as part of the state and as a possible action.

We say that an observed sequence ω matches an execution trace χ of a plan
π, if the action sequence is a prefix of the execution trace, ignoring all destination
assumptions. The remaining part of the trace is called the unmatched tail ,
denoted by χ\ω. Further, an i-compatible execution trace is a trace such
that all destination assumptions for i are of the form (i : α∗(i)).

Joint execution of MAPF/DU branching plans now proceeds as fol-
lows. All agents i that have formed an i-strong plan πi from some objective
state (αi, βi) consider all i-compatible execution traces χi

k that match the ob-
served action sequence ωi, which started in (αi, βi). If for agent i, the first
action of all unmatched tails χi\ωi

k is one of i’s atomic actions, we say that
agent i wants to act . One of these agents that want to act is then chosen
and the corresponding action, say a, is executed modifying the current objective
state (α, β) to (α′, β′) = oexec((α, β), a) and extending the individual observed
action sequences to ω′i = ωi; a for all agents i. All agents that have a plan that
contain i-compatible execution traces matching ω′i do not need to replan. All
others have to replan from (α′, β′). This continues until no agent wants to act
any more.

Hopefully, an objective state (α∗, β) with β[i] = ∅ for all i has been reached
by then. However, while such a final state might not be reached, because, e.g.,
all agents want others to act or agents go into infinite execution cycles, it is
clear that the outcome of executing an observed action sequence of finite length
ω generated by joint execution of i-strong plans is always defined (because ω is
always the prefix of an execution trace of some i-strong plan). Moreover, if an
objective state is reached such that all agents have announced success, then the
agents must have reached the goal configuration α∗ (because all agents use only
i-compatible execution traces to choose their actions).

Proposition 7 Let ω be the observed action sequence resulting from joint ex-
ecution of i-strong plans on the MAPF/DU instance 〈A,G, (α0, β0), α∗〉 that
cannot be extended any more by the execution process. Then oexec((α0, β0), ω)
is defined. Further, if (α, β) = oexec((α0, β0), ω) and β(i) = ∅ for all i, then
α = α∗.
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4.1 Objective and Subjective Solvability

In contrast to the full information case, it now can happen that agents have a
different perspective and therefore judge the solvability differently. Consider the
example in Figure 8, where our usual suspects are joined by triangular agent T .

v1 v2 v3 v4 v5

v6

Figure 8: Subjectively but not objectively solvable MAPF/DU instance

From T ’s perspective, the instance does not appear to be solvable, i.e., there
is no T -strong plan. The reason is that from T ’s perspective, it could be possible
that S has to move to the empty square and C has to move to the empty cir-
cle, and there is no way that the two agents can both reach these destinations.
However, S is able to form an S-strong plan: First go to v1, then announce
success. This results in a stepping stone for C, so that C can reach its des-
tination and announce success, after which T finally can make the last move
and announce success as well. From C’s perspective, it looks similar. So, this
instance is S- and C-solvable, but not T -solvable. We call an instance sub-
jectively solvable , if it is i-solvable for some agent i. In contrast, we also
consider objective solvability , which means that the objective state (α0, β0)
is solvable without having information about the destination of the agent that
moves first. A branching plan accomplishing that, i.e., a plan that is i-strong for
every agent i, is called objectively strong plan .5 Clearly, objective solvability
implies subjective solvability, but not the other way around.

Note that plans that are i-strong but not objectively strong have a special
structure. They consist of an initial movement sequence by agent i, followed by
a success announcement, followed by a perspective shift to another agent. The
reason for the success announcement immediately before the perspective shift
is that without it, the plan would be objectively strong, which we assumed it is
not.

One question that may come up in this context is whether it could happen,
that a MAPF/DU instance is i-solvable for all agents i, but not objectively
solvable. The example in Figure 8 can be easily modified to arrive at such an
example. Let us eliminate agent T . Then it is clear that the instance is S- and
C-solvable. However, there does not exist an objectively strong plan. In order
to show this, let us consider plans, where agent C starts to move. We could
initially split on C’s destinations. If it is v5, then C moves there, announces
success, and then S could move to its destination. If instead C’s destination

5Note that a problem being objectively solvable does not mean that it is only solvable when
the goals are known, that is, it is not planning from an omniscient, centralized perspective.
It is still planning under destination uncertainty, it just means that it is planning where all
destinations are taken to be uncertain.
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is v2, then it could move to v6. However, this is not a stepping stone for S,
because if C’s destination is v5, then this might not be reachable after S moved
to v4. So, there is no objectively strong plan.

One might argue, however, that after agent C moved to v6, agent S knows
that C’s destination cannot be v5. Otherwise it would have moved there imme-
diately and had announced success, enabling S to complete the task. Based on
the conclusion that C’s destination cannot be v5, S can move to its destination
(whether it is v1 or v4) announcing success, and then wait for C to complete the
task. While this sounds rational, it is not a objectively strong plan in the sense
we defined it here. The reason is that we took into account information from
the history in order to prune on possible destinations. This appears to be very
similar to what has been called forward induction in game theory [2], however,
it is not clear how to incorporate this into our framework in a general way.

4.2 Success Guarantees for Conservative Eager MAPF/DU
Agents

As in the full information case, lazy agents will probably be able to provoke
a deadlock. So, what is a lazy plan in this context? It is a plan where at
some point an action of another agent is planned for, although an action by the
original agent would have been possible. So, formally, an i-strong plan is a lazy
plan relative to agent i and a class of plans if it contains an execution trace
such that the k + 1th action is by agent j 6= i and there exists another i-strong
plan in this class of plans containing an execution trace that is identical up to
the kth action, but the k + 1th action is one by agent i. The branching plan
depicted in Figure 7 is lazy with respect to agent S and all S-strong plans since
S could have moved to v3 after its first move, and still one could extend this
plan successfully to an S-strong plan. Agents that do not generate lazy plans
are called again eager agents.

Forbidding lazy plans will avoid deadlocks, however, we run into the same
problem as in the full information case, i.e., joint executions with replanning
might lead to non-terminating executions. In the full information case, one way
to guarantee termination of executions was to insist on conservatism. In the new
setting, we require that for an agent i to be conservative it needs to replan
from the initial configuration (α0, β0) generating a conservative i-compatible
plan , i.e., a plan that contains an i-compatible execution trace that matches
the observed action sequence.

This requirement, however, is not enough. In order to account for instances
that are only subjectively solvable as in Figure 8, which we want to be able to
deal with, we need to redefine the notion of conservatism somewhat. In order to
be able to generate a conservative plan for T in Figure 8 after S has announced
success, we need to modify the initial belief state. Changing the initial belief
state in a form so that the true destination of S is known in the initial state,
would be enough.

So, for conservative replanning , we require that after each success an-
nouncement of an agent i, the initial objective state (α0, β0) will be modified to
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an objective state such that all agents know the destination of agent i who just
announced success:

(α′0, β
′
0) =

(
α0, β0

[
i/{α∗(i)}

])
. (5)

This permits all agents to form a plan that contains as an initial part the already
executed actions and will perhaps prune away some branches of the original plan,
potentially reducing the execution cost.

Interestingly, this will lead to the following behavior when replanning con-
servatively on instances that are only subjectively solvable. If an instance is
not objectively but only subjectively solvable, this means that all of the agents
that have an i-strong plan will have planned to move to their known destination
α∗(i) and announce success, as mentioned in Section 4.1. Now, if one agent i is
chosen to make the first move, no other agent will be able to replan conserva-
tively, i.e., the other agents “loose” their solutions. The reason is that after the
first move of i, all of the other agents have to replan starting from the initial
state for i to move first, implying a perspective shift to i initially. Since the
instance is not objectively solvable, the other agents cannot find such a plan
and the only agent with a plan will be agent i which moved first. Only, after i
reaches its destination and announces success, then the remaining configuration
is objectively solvable, because i had to plan for all possible destinations of the
other agents. And now all other agents can come up with a conservative plan
using the modified initial objective state.

This behavior can be seen in the example of Figure 8. After S moves to
v1, C needs to replan. Replanning conservatively, it tries to find a plan with S
making the first move, but will not find it. Only after the success announcement
by S on v1, both C and T are able to form a plan starting at the modified initial
state.

Since the state space is finite, and all acting agents know how the plan
can be completed, conservative replanning is always successful. However, since
distributed MAPF as characterized in Section 2 is a special case of MAPF/DU,
executions can, of course, blow up the execution length.

Proposition 8 For MAPF/DU instances, joint execution and replanning of
movement plans generated by conservative eager agents is always successful, pro-
vided the instance is solvable. However, executions can be exponentially longer
than the execution costs of an i-strong plan.

4.3 Optimally Eager MAPF/DU Agents

In the full information case, focusing on minimal-length plans saved us. The
hope could be that it is possible to generalize this to branching plans with
minimal execution costs. In the more general case of epistemic planning it has
been shown that optimally eager agent can still end up in infinite executions
[5]. Whether it leads to infinite executions in our more specialized setting case
is not immediately clear.

Consider the MAPF/DU instance in Figure 9. Here, the possible destina-
tions are marked by agent identifiers in parenthesis after the colon, while the
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m0 : (a1)

n1 : a2

a1
n3 : (a1)m1 : (a1)

n2 : (a1) n4 : (a1)

a2
n5 : (a1)

n6 : (a2) n7 : a1

Agent a1 has a shortest plan with 7 steps (a1 starting, moving to n4)
Agent a2 has a shortest plan with 8 steps (a2 starting, moving to n4)

Figure 9: Counter example: Initial state

actual destinations are shown without parenthesis. Note that there are four
directed edges, which can only be passed in the direction of the arrow. We now
demonstrate that for optimally eager agents it is possible to create an execution
sequence that leads to an execution cycle in the objective state space.

Note that the only stepping stone situations for agent a1 are the ones where
agent a2 is on node n1, which is also the actual destination of a2. So, agent
a2 will plan to move to n1 in order to create a stepping stone and to get to its
goal. An eager a2-strong plan would move a2 to n1 via n4 and n2 and announce
success in 3+1 steps. After that, the plan branches on the possible destinations
of a1 adding in the worst case 3 move actions and an announcement action (3+1
steps), which leads to an overall worst-case cost of 8.

The alternative would be for a2 to wait for a1 to move out of the way to
n4 (1 step), then a2 moves to n1 to create the stepping stone (2 steps). Note
that in this case, a2 cannot announce success, since when the plan starts by a2
taking the perspective of a1, the rest of the plan has to be verifiable from the
perspective of a1. So, the plan continues by a1 moving to its destination and
announcing success (worst case 3 + 1 steps) followed by finalizing the task by
a2 (worst case 3 + 1 steps). In total, we have 11 steps and in addition the plan
is not eager, so a2 prefers the first one.

Planning from a1’s perspective, it could move to n7 announcing success (3+1
step), which creates a stepping stone for a2 with worst case cost of (2+1 steps),
totalling 7 steps. An alternative for a1 would be to wait for a2 to move first,
creating a stepping stone (3 steps). After that a1 could go to its destination
with worst-case cost (3+1), i.e., this plan would be longer than 7 steps.

Let us assume that agent a2 starts to execute the first plan mentioned above,
leading to the situation in Figure 10. In this situation, agent a1 can either wait
for agent a2 to move out of n4, since agent a1 knows that agent a2 is trying to
get to n1, or agent a1 can take the path n3n2n5n6n7. The execution cost of
the first plan is the cost of creating the stepping stone (2 steps by a2) plus the
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m0 : (a1)

n1 : a2

a1
n3 : (a1)m1 : (a1)

n2 : (a1)
a2

n4 : (a1)

n5 : (a1)

n6 : (a2) n7 : a1

Agent a1 has a shortest plan with 8 steps (a1 starting, moving to n2)
Agent a2 has a shortest plan with 7 steps (a2 starting, moving to n2)

Figure 10: Counter example: After execution of (a2, n5, n4)

worst-case cost for a1 to move to its destination and announce success (3 + 1)
plus the worst-case cost of agent a2 moving to its destination and announce
success (3 + 1), in total 9. The execution cost of the second plan is the cost
of a1 to move to the destination and announce success (4 + 1) plus the worst-
case cost of agent a2 moving to its destination and announce success (2 + 1), in
total 8. Hence, an optimally eager agent will choose the second of these plans.
Alternatively, a2 might follow its plan described above, leading to 7 steps (one
less than in the initial situation shown in Figure 9). Let us assume, that agent
a1 executes the next step, then it will move to n2 (see Figure 11).

m0 : (a1)

n1 : a2

n3 : (a1)m1 : (a1)

a1

n2 : (a1)
a2

n4 : (a1)

n5 : (a1)

n6 : (a2) n7 : a1

Agent a1 has a shortest plan with 7 steps (a1 starting, moving to n5)
Agent a2 has a shortest plan with 8 steps (a2 starting, moving to n5)

Figure 11: Counter example: After execution of (a2, n5, n4), (a1, n3, n2)

Comparing the new state with the initial state, one notices that we have
reached a configuration which is completely symmetric to the initial state. In
other words, with two additional steps, we could reach the initial situation
and would have created an execution cycle in the objective state space. So, in
contrast to our positive result for distributed MAPF in Proposition 1, we now
have a negative result.
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Proposition 9 For MAPF/DU instances, joint execution and replanning gen-
erated by optimally eager agents is not always successful, even when the instance
is objectively solvable.

4.4 Conservative, Optimally Eager MAPF/DU Agents

The above example highlights two problems. First, since an acting agent knows
its actual destination in the beginning, it considers the execution costs differently
from all the other agents. Second, by replanning from a configuration another
agent has created, it can happen that the execution cost increase, leading to the
cycle shown above.

One way to address this problem is conservatism. As was noted above in
Proposition 8, conservatism alone is already enough for eager agents to guar-
antee success. However, we want, of course, to get rid of the exponential ex-
ecution length! And so we consider conservative, optimally eager agents
which plan conservatively as described above and among the conservative i-
compatible plans only consider those with the lowest execution cost. While one
would expect that in this case the execution length is bounded polynomially,
this is not immediately obvious. In particular, one might fear that with each
replanning step, the execution length could increase. However, it is possible
to show that this cannot happen. The main argument is that after the initial
movements of one agent i, all still active agent have to create objectively strong
plans, because of the initial perspective shift to i. This forces them to align
their perspectives and so they might generate different plans, but all plans will
have the same execution costs.

Theorem 10 For solvable MAPF/DU instances, joint execution and replan-
ning by conservative, optimally eager agents is always successful and the execu-
tion length is polynomial.

Proof: Since the instance is solvable, there is at least one agent which has
formed an i-strong plan. Moreover, since all agents are eager, there must be
one that wants to execute an action. Assume that agent i is chosen to execute
its action. After the action, the other agents will have to replan coming up
either with no plan (e.g., if the instance was only locally solvable) or with an
objectively strong plan with an initial perspective shift to agent i. These objec-
tively strong plans will all have the same execution cost because all agents k 6= i
plan optimally and have the same knowledge when planning since they are now
planning with an initial perspective shift to agent i, which make them“forget”
their own goals. Agent i may be chosen to execute further actions (provided the
initial action was not a success announcement), leading to further replanning
for the remaining agents. However, assuming n to be the number of vertices
in the graph, no more than n − 1 movement actions in a row by agent i are
possible, because otherwise the plan by i would not be cycle-free. So, after at
most n− 1 movement actions by agent i, (1) either another agent j will act or
(2) i will announce success.
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In case (1), replanning will lead to objectively strong plans with making a
perspective shift to i for all agents k 6= i as described in the previous paragraph.
Agent i will form a plan with an initial sequence of its own actions (knowing
his own destination), then shifting the perspective to agent j. This plan must
also be an objectively strong plan, because after its first perspective shift to j,
it must cover all possible destinations of i. For this reason, all agents, planning
optimally and using the same prefix, will come up with plans having the same
execution cost m.

In case (2), the initial objective state is modified according to Equation 5.
After that, because i had an i-strong plan, all remaining agents k 6= i agents are
guaranteed to find an objectively strong plan (with an initial perspective shift
to i). Again, all these plans will have the same execution cost m, because the
agents have the same knowledge and plan optimally.

In future replanning steps, the execution costs of the plans can never increase
because all agents follow these plans, so in replanning it must always be possible
to find a plan with execution costs of at most m.

In summary, this means that no more than n + m steps will be executed,
where m has an upper bound of O(n4) by Theorem 6.

Let us reconsider the example from Section 4.3. We showed that optimally
eager agents could end in an infinite cyclic execution. By the theorem above,
this can not happen when the agents are conservative, optimally eager. Let us
illustrate this on the example.

We will again assume that in the situation depicted in Figure 9, a2 is chosen
to act, resulting in the situation in Figure 10. Agent a2 does not need to replan
and can still use the plan formed in the initial state. Agent a1 needs to replan,
however. Since this is a conservative plan, it will start with the action of agent
a2 moving to n4 (1 step). One possibility to extend this plan would be to wait
for a2 to create a stepping stone by going to n2 and then n1 (2 steps). Then a1
could move to its own destination (which because of the initial perspective shift
to a2 has been “forgotten” by a1) and announce success (worst case 3+1 steps),
followed by a2 moving to its destination (worst case 3+1 steps). All in all 11
steps from the initial state. Alternatively a1 could try to minimize its worst-case
distance to its destination or it could try to shorten a2’s path to n1 before a2
creates a stepping stone. Neither is possible, however. So, although a1 is eager,
there is no plan with execution cost of 11 or less where a1 makes a movement
after the initial movement of a2. The same is true after a2 has executed its
move to n2 and n1. Now a2 can announce success on n1. However, also a1 can
now come up with a plan, where he wants to act. Regardless of whether a2
announces success or not, a1 forms an objectively strong plan starting with the
movements of a2, perhaps its success announcement, followed by a perspective
shift to itself. Then it will plan for all destinations and finally use only the
a1-compatible traces with the right destination assumption.
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5 Computational Complexity of MAPF/DU Plan-
ning

It looks as if MAPF/DU planning is harder than MAPF planning. In fact,
general as well as bounded plan existence for strong plans is PSPACE-complete.

Theorem 11 Deciding whether there exists a MAPF/DU i-strong or objectively
strong plan is PSPACE-complete.

Proof: Membership in NPSPACE follows from Theorem 6. If there exists a
plan, then we can guess all its traces (of polynomial length) and verify that they
are successful. Since NPSPACE=PSPACE, the problem is in PSPACE.

We prove hardness by a reduction from QUANTIFIED 3SAT, which is
known to be PSPACE-complete [27]. Given the quantified Boolean formula

Ψ = ∀x1∃x2 . . . φ(x1, x2, . . . , xn),

with n variables, ne existentially quantified, nu universally quantified, where
φ(x1, x2, . . . , xn) is in conjunctive normal form and contains m clauses Cj with
exactly three literals ljk, we construct a MAPF/DU instance with the property
that there exists a (globally or x2-) strong plan if and only if Ψ is true. We
proceed by constructing three gadgets, which we call choice sequencer, clause
evaluator, and collector, respectively. We illustrate the construction using the
example in Figure 12.

x1

v1:f1

x2

v2:f2

x3

v3:f3

f1
v4

f2

v5:f4

f3

v6:f5

c1

v7:f6

f4
v8

f5
v9

f6
v10

c2
v11

vT1,2:(x1) vT1,1

vF1,2:(x1) vF1,1

vT2,2

vT2,1

vF2,2 vF2,1

x′2 v∃2 :x2

vT3,2:(x3) vT3,1

vF3,2:(x3) vF3,1

v′∃2 :x′2

vc2 :c2

vc1 :c1

choice sequencer

clause evaluatorcollector

Figure 12: Example construction for ∀x1∃x2∀x3 : (x1∨x2∨¬x3)∧(¬x1∨x2∨x3)

The task of the choice sequencer is to enforce the sequence of truth-value
choices of the variables and, after all choices have been made, to start the clause
evaluation. It consists of a sub-graph with n+m(n+1) nodes, which are named
v1 to vn+m(n+1). These nodes are connected linearly, i.e., there is a directed
edge from vi+1 and vi. The nodes v1 to vn are occupied by variable agents
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named x1 to xn. In addition we have clause agents cj , 1 ≤ j,≤ m on the nodes
vn+j(n+1), respectively. The rest of the nodes are filled with filler agents fk for
all the not yet occupied nodes. The (deterministic) destination for each filler
agent fk is the node with an index n lower than the one fk is starting from.

The clause evaluator contains for each variable xi two pairs of nodes: vTi,1, v
T
i,2,

and vFi,1, v
F
i,2 with a directed edge from the i, 1 to i, 2 nodes. For a universally

quantified variable xi, the nodes vFi,2 and vTi,2 are the two potential destinations
of variable agent xi. Note that we do not care what the actual destination is be-
cause we are interested in x2-strong plans or objectively strong plans (implying
that the agent moving first does not know any of the true destinations). These
destination nodes represent the truth assignment true and false, respectively.
For an existentially quantified variable xi, there exists an additional node v∃i ,
which has a directed edge pointing to it both from vFi,2 and vTi,2 and which is the
deterministic destination for agent xi. Initially, another copy agent x′i occupies
v∃i .

The node v1 has a directed edge to the nodes vFi,2 and vTi,2 of the choice
sequencer. Since the copy agents x′i do not have any place they can immediately
go to without blocking the way for the clause agents to their final destination,
this implies that in the beginning the variable agents x1 to xn will all move to
vFi,2 or vTi,2, whereby for the universally quantified variables, both choices have
to be considered in evaluating whether the plan is a strong plan. Furthermore,
the choices have to be made in the same order as in the quantifier prefix of the
formula. Once all the xi agents have reached their nodes, the remaining agents
in the choice sequencer can move from nodes vk to vk−n bringing all the filler
agents fk to their respective destinations. Further, all clause agents cj have
to go from vn+j(n+1) to vj(n+1), whereby these latter nodes are connected to
the clause evaluator in the following way. The node vj(n+1), which will hold
clause agent cj after all agents moved n steps to the lower numbered nodes, is
connected to vTi,1 iff the clause Cj contains xi positively and it is connected to

vFi,1 iff Cj contains xi negated.
Finally, the collector gadget provides the destinations for all the clause agents

cj and the copies of the existential variable agents. Assuming we have the the
set of existentially quantified variables {xj1 , . . . , xjne

}, we create the following
sequence of nodes v′∃jne

, . . . , v′∃j1 , vcm , . . . , vc1 . From all nodes vFi,2, vTi,2 and v∃i
there is a directed edge to v′∃jne

. If there is no existential variable, then the
directed edges point to xcm .

This construction is obviously polynomial in the size of the QBF formula.
We now have to show that it is indeed a reduction.

Assume that the QBF formula is true. Then we can generate an objec-
tively strong plan as follows. The universally quantified variable agents move to
their respective destinations branching on their destinations. These are stepping
stone utilizations, provided that the formula is true. The existentially quantified
variables choose one of vFi,2 and vTi,2 as the temporary location. After all (uni-
versally quantified) variable agents are in place, the clause agents can move one
after the other to their destinations in the collector gadgets. Since the formula
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is true, we know that for each choice of the universal variable agents and for
appropriate choices of the existential variable agents, each clause contains one
true literal corresponding to an unblocked path through the clause evaluator
to the destination. After the clause agents have reached their destination, the
copy agents x′i have to go to their respective destinations, which makes room for
the existentially quantified variable agents xi move to their destinations, after
which all agents have reached their destinations.

Conversely, assume that there exists an objectively strong plan (or an x2-
strong plan). Then the movements and branching points are as above and if the
clause agents can pass through the clause evaluator to the collector, it means
that the choices made by the variable agents led to a satisfying assignment. Since
the plan is strong, this holds for all possible assignments, hence the formula must
be true.

Solving the bounded plan existence problem is, of course, not easier, since
on can reduce the general existence problem to the bounded existence problem
with a polynomial given by Theorem 6. Membership follows again by nondeter-
ministically checking all traces of the polynomial-depth (Theorem 6) plan.

Corollary 12 Deciding whether there exists a MAPF/DU i-strong or objec-
tively strong plan with execution cost of k or less is PSPACE-complete.

This increase in computational complexity when going from distributed
MAPF to MAPF/DU probably does not come as a surprise, and it seems to
rule out applications as the ones envisioned in the Introduction, namely, im-
plicit coordination in a human-robot context or when agents are not able to
communicate. However, when looking at the reduction, one sees that it is very
involved and does not seem to be close to situations one encounters in real life.
In particular, it is probably very seldom that one encounters n + m · (n + 1)
agents (for moderately large n and m) at the same time. For a fixed number of
agents, the problem is fortunately solvable in polynomial time.

Proposition 13 For a fixed number c of agents, deciding whether there exists
a MAPF/DU i-strong or objectively strong plan with execution cost of k or less

can be computed in time O(nc
2+c).

Proof: Given a MAPF/DU instance MDU = 〈A, (V,E), (α0, β0), α∗〉 with
|V | = n and a fixed number of agents c = |A|, the following algorithm re-

turns the execution cost of an optimal plan in T (n, c) = O(nc
2+c) steps:

If c = 1, return the length of a shortest path for the agent to its goal position.
For example, using Dijkstra’s algorithm this can be done in O(n2). In the case
of c > 1, proceed as follows:

1. Check for each of the O(nc) possible placements αi whether for one agent
all possible destinations are reachable without moving the other agents.
Memorize the shortest path length for each agent/destination pair. Again,
using Dijkstra this can be done in O(nc · c · n2) = O(nc+2).
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2. For each such possible stepping stone, compute a shortest movement plan
to reach it from α0. This can be done by computing shortest paths on the
product graph in time O(nc · (nc)2) = O(n3c).

3. For each such possible stepping stone and the respective agents that can
reach all their goals from there, apply our algorithm recursively. The
subproblems are the ones where the agent has already reached its goal
and announced success. The number of subproblems which have to be
solved is bounded by c ·nc, so the runtime for solving all the subproblems
is O(nc)T (n, c− 1).

4. Add the path lengths from steps (2) and (3) to the recursively obtained
execution costs. Maximize over the goal candidates for each agent. Memo-
ize these costs for all stepping stone/agent pairs and return the minimum.
This can be done in O(nc · c · n) = O(nc+1).

Our algorithm has a runtime of T (n, c) = O(nc)T (n, c − 1) + O(n3c), with
T (n, 1) = O(n2). We can expand this to T (n, c) = O(nc)c−1O(n2)+O(nc)c−2O(n3c) =

O(nc
2+c).

For two agents, this would result in a runtime of O(n6). However, one would
probably expect a significantly lower practical runtime, provided the environ-
ment is not too complicated.

6 Related Work

There is a very rich body of research on the MAPF problem and its variations.
The first paper in this area with substantial results is the one by Kornhauser
et al. [21]. They considered memory contents moving over computer networks,
formalized as pebbles. However, the results apply, of course, to agents in spatial
environment represented as a graph as well. The paper spells out all important
ingredients, demonstrates that solvability can be decided in polynomial time,
and sketches an algorithm for generating movement plans.

The paper by Ratner and Warmuth [23] was the first paper that looked
at the problem of generating optimal movement plans. They showed that the
problem is NP-complete. Later, variations of this problem were analyzed, for
instance, MAPF with simultaneous moves [28] or MAPF on directed graphs [6].
Furthermore, different metrics were considered [32]. In all cases, though, the
problem of generating shortest plans remains NP-complete.

Complete MAPF solvers (optimal and sub-optimal) were proposed for dif-
ferent variations of the problem [30, 9, 13]. Taking some of the kinematics of
real robots into account, the multi-robot path finding problem was studied as
well [17, 4]. Finally, also uncertainty of the position or the movements are taken
into account [29].

If optimality and/or completeness is an issue, then central planners are usu-
ally used. However, they have to plan in the product space of the single agent
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search spaces, which leads to a restriction on how many agents can be handled.
In order to scale better, often distributed planning approaches are used that
combine plans generated by/for single agents [26, 20]. However, it is always
assumed that the agents can communicate in order to resolve conflicts.

As mentioned in the Introduction, there is almost always the assumption
that all agents know the destinations of the other agents and that they act
in a coordinated manner. This means that a plan can be generated centrally.
On the other hand, there is a long tradition of analyzing general distributed
planning and acting, [10]. Brenner and Nebel [8], e.g., looked at this problem
and proposed actually as one of their benchmarks the MAPF/DU problem.
However, their solution did not include the anticipation of actions by other
agents as we have done here.

Distributed POMDPs (decPOMPDs) allow for distributed execution [16]
and might therefore be considered as providing solutions to the problems such
as MAPF/DU. However, decPOMDPs are based on a central offline planning
process. This problem is overcome by using interactive POMDPs [15]. However,
it is not immediately clear, how one could use this framework in order to model
and solve the MAPF/DU problem.

A completely different approach to model and solve a problem such as
MAPF/DU could be to use general game playing. Extensions such as the
one introducing games with imperfect information [24] could be used to model
MAPF/DU instances, which could then be solved using an GDL-II game solver,
e.g., HyperPlay [25]. Since the solver is sampling based, it is probably incom-
plete, though.

The approaches that come closest to the one proposed here are the papers on
epistemic planning by Bolander et al. [5] and Engesser et al. [12]. As a matter of
fact, the notions of implicit coordination and i-strong plans are directly borrowed
from those papers. Since the MAPF/DU problem is much simpler than the
general epistemic planning problem (which is undecidable), it is possible to
achieve some positive results. On the other hand, the results in this paper may
be useful for giving inspirations to the research on general epistemic planning.

Finally, one should mention that one of the key concepts in solving the dis-
tributed MAPF and MAPF/DU problems is replanning. Of course, replanning
or continual planning is not new and is used regularly to deal with contingency
problems [1, 8, 7]. Our approach uses replanning in a different way, though.
Replanning is only used in order to account for unanticipated actions of the
other agents. Since deviations of other agents are nevertheless part of a suc-
cessful plan, replanning will never choose an action leading into a dead end,
which might occur in other approaches. By requiring in addition eagerness and
conservatism and/or optimality, we can even guarantee success for some types
of agents. This distinguishes our approach from the usual continual planning
approaches.
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7 Summary and Outlook

We have generalized the well-known MAPF problem to a distributed setting
with uncertainty about the destinations of the other agents. First we considered
the case, where the agents have common knowledge about their destinations, but
have to plan in a distributed fashion, cannot communicate, and have to execute
their plan in a distributed way. As we have shown, agents are guaranteed to
succeed, provided they are eager and either conservative when replanning or
they are planning optimally. However, in the first case executions might last
exponentially long while in the latter case the agents have to solve a sequence
of NP-complete problems. A middle ground between these two extremes would
require approximation algorithms for the optimal MAPF problem, and we are
not aware of any such algorithm. All in all this demonstrates the value of
communicating about plans. When such communication is possible, planning
and/or execution time can be significantly shortened.

Going one step further, we dropped the assumption that destinations are
common knowledge, resulting in the MAPF/DU problem. In order to solve
this problem, one first has to come up with a reasonable solution concept. We
propose to use branching plans, which branch on the possible destinations of
the executing agent. In particular, these plans anticipate actions of the agents,
although these anticipation might turn out to be wrong. Branching plans that
for a subjective state of agent i are successful for all branches are called i-strong
and capture what has been termed implicitly coordinated plans or policies [12].
One important result of this paper is the identification of stepping stone config-
urations as a backbone for generating i-strong plans. Using this result, we can
show that the minimal worst-case execution cost of such plans is polynomially
bounded.

Similar to the distributed MAPF setting, we investigate under which con-
ditions we can guarantee success. It turns out that in the MAPF/DU setting,
agents have to be eager and conservative. Because of non-uniform knowledge,
optimally eager agents are not universally successful, as we have demonstrated.
Nevertheless, if we add conservatism, we can show again that success is guar-
anteed and that the worst-case execution length is bounded polynomially.

While this success guarantee is encouraging, the computational costs are
unfortunately even worse than in the distributed MAPF setting. Deciding the
general and the bounded i-strong and objectively strong plan existence problem
is PSPACE-complete. This reinforces the conclusion above: Communication
can have a significant effect on lowering computational costs. Furthermore,
it suggests that this technique is probably not meant to be used in a real-
time, online fashion. However, if there are only a few agents present in the
environment, things look much more promising. For a fixed number of agents
the bounded MAPF/DU plan existence problem is polynomial.

The paper gives a first idea of what issues arise when solving the MAPF/DU
problem. However, there are also a number of open problems. First of all, all
results were proven for the most general case of directed graphs. Whether the
results also hold for undirected graphs, planar graphs, or graphs resulting from
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a grid map is not obvious. While bounded MAPF/DU plan existence (Corol-
lary 12) can be easily shown to be PSPACE-complete for undirected graphs,
it is unclear, e.g., whether this still holds for general plan existence or for pla-
nar graphs. Second, one might ask whether the non-overlapping constraint for
possible destinations is really necessary. Perhaps, one can even allow for more
expressive goal configuration descriptions. Third, one may want to relax the
solvability constraints. For example, it might be considered desirable to find
plans for situations, when no strong plans exist. Fourth, one might argue that
the asynchronous execution model is unrealistic. Whether one could come up
with a reasonable parallel execution model is not obvious, though. Fifth, we
have just started to explore the space of implicit coordination. The only kind of
communication currently allowed is the announcement of success. Perhaps, with
more communication other success guarantees could be established. Finally, it
is conceivable that agents could be more aggressive in making conclusions from
the movements of other agents. Something similar to forward induction known
from game theory [2] might help in order to coordinate implicitly.
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