Derandomizing Distributed Algorithms with Small Messages: Spanners and Dominating Set

Mohsen Ghaffari1 and Fabian Kuhn2

1 ETH Zurich, ghaffari@inf.ethz.ch
2 University of Freiburg, kuhn@cs.uni-freiburg.de

Abstract

This paper presents improved deterministic distributed algorithms, with $O(\log n)$-bit messages, for some basic graph problems. The common ingredient in our results is a deterministic distributed algorithm for computing a certain hitting set, which can replace the random part of a number of standard randomized distributed algorithms. This deterministic hitting set algorithm itself is derived using a simple method of conditional expectations. As one main end-result of this derandomized hitting set, we get a deterministic distributed algorithm with round complexity $O(\sqrt{\log n \cdot \log \log n})$ for computing a $(2k - 1)$-spanner of size $\tilde{O}(n^{1+1/k})$. This improves considerably on a recent algorithm of Grossman and Parter [DISC’17] which needs $O(n^{1/2 - 1/k} \cdot 2^k)$ rounds. We also get a $2^{O(\log n \cdot \log \log n)}$-round deterministic distributed algorithm for computing an $O(\log^2 n)$-approximation of minimum dominating set; all prior algorithms for this problem were either randomized or required large messages.

1998 ACM Subject Classification G.2.2 Graph Theory - Graph Algorithms

Keywords and phrases Distributed Algorithms, Derandomization, Spanners, Dominating Set

Introduction and Related Work

This paper presents improved deterministic distributed algorithms in the CONGEST model for central graph problems including spanners and dominating set. Let us first recall the model definition.

The CONGEST model [32] of distributed computing: The network is abstracted as a simple n-node undirected graph $G = (V, E)$. There is one processor on each graph node $v \in V$, with a unique $\Theta(\log n)$-bit identifier $ID(v)$, who initially knows only its neighbors in G. Communication happens in synchronous rounds. Per round, each node can send one, possibly different, $O(\log n)$-bit message to each of its neighbors. At the end, each node should know its own part of the output. For instance, when computing spanners, each node should know whether each of its edges is in the computed spanner (a computed subgraph of G, to be defined later) or not. We note that the variant of the model where we allow unbounded size messages is known as the LOCAL model [27,32].

1.1 Our Contributions

1.1.1 Spanners

Graph spanners are a fundamental graph concept with a wide range of applications in distributed computing [4,33]. For a graph $G = (V, E)$, a subgraph $H = (V, E')$ is an α-stretch spanner if each pairwise distance in H is at most an α factor larger than the same
distance in G. Ideally, we want spanners with small stretch and small number of edges. It is known that any n-node graph admits a $(2k − 1)$-stretch spanner with $O(n^{1+1/k})$ edges $[4,33]$, and this tradeoff is optimal conditioned on a widely-believed girth conjecture of Erdős $[14]$.

Baswana and Sen $[8]$ gave a randomized algorithm in the CONGEST model for computing a $(2k − 1)$-stretch spanner with $O(kn^{1+1/k})$ edges in $O(k^2)$ rounds. Notice that $k \in [1, \log n]$. Hence, this is a poly$(\log n)$ round randomized algorithm with spanner size within a logarithmic factor of the optimal. There was a series of works that eventually led to a poly$(\log n)$ or even just $O(k)$ round deterministic algorithm with a similar spanner size $[10–12]$ but all these algorithms use large messages. Currently, there are only three deterministic algorithms that work in the CONGEST model. One is the work of Barenboim, Elkin, and Gavoille $[7]$, which runs in poly$(\log n)$ rounds, but has a considerably weaker stretch-size tradeoff: it computes a spanner with stretch $O(\log^{k-1} n)$ and size $O(n^{1+1/k})$ in $O(\log^{k-1} n)$ rounds. The other two results obtain a near-optimal stretch-size tradeoff but their round complexity is considerably higher. Derbel, Mosbah, and Zemmari $[13]$ gave an algorithm with round complexity $O(n^{1-1/k})$ for computing a $(2k − 1)$-stretch spanner with size $O(kn^{1+1/k})$. Finally, very recently, Grossman and Parter $[18]$ gave an algorithm with round complexity $O(2^k n^{1/2−1/k})$ for computing a $(2k − 1)$-stretch spanner with size $O(kn^{1+1/k})$.

Our first result considerably improves on this line of work, leading to a sub-polynomial round complexity for a nearly optimal stretch-size tradeoff:

>$\textbf{Theorem 1.}$ There is a distributed deterministic algorithm in the CONGEST model that computes a $(2k − 1)$-stretch spanner with size $O(kn^{1+1/k} \log n)$ in $2^O(\sqrt{\log n \log \log n})$ rounds.

1.1.2 Minimum Dominating Set

Minimum Dominating Set is another problem that has been central in the study of distributed algorithms for local problems, see e.g. $[24]$. Given a graph $G = (V,E)$, a set $S \subseteq V$ is a dominating set of G if each node $v \in V$ is either in S or has a neighbor in S. Jia et al. $[20]$ gave a randomized $O(\log \Delta)$-approximation in $O(\log n \log \Delta)$ rounds of CONGEST model. Kuhn and Wattenhofer $[24]$ gave a randomized distributed algorithm that computes an $O(\sqrt{\Delta} \log^2 \log \Delta)$-approximation in $O(k)$ rounds, e.g., an $O(\log^2 \Delta)$ approximation in $O(\log^2 \Delta)$ randomized rounds of CONGEST model. Later, Kuhn et al. $[23]$ gave an $O(\log \Delta)$ randomized approximation in $O(\log n)$ rounds. Lenzen and Wattenhofer $[26]$ pointed out that obtaining efficient deterministic algorithms for approximating minimum dominating set remains open. The only known result afterward is an algorithm of Barenboim et al. $[7]$, which computes an $O(n^{1/k})$-approximation in $O(\log^{k-1} n)$ rounds; however this algorithm uses large messages. The complexity of deterministic CONGEST-model algorithms for approximating minimum dominating set remains open.

Our second result provides the first answer to this question, by providing a sub-polynomial round complexity for poly-logarithmic approximation.

>$\textbf{Theorem 2.}$ There is a distributed deterministic algorithm in the CONGEST model that computes an $O(\log^2 n)$ approximation of minimum dominating set in $2^O(\sqrt{\log n \log \log n})$ rounds.

We remark that while it might be possible to improve this round complexity to $2^O(\sqrt{\log n})$, improving it further and especially to poly$(\log n)$ would imply a major breakthrough in distributed graph algorithms: A result of Ghaffari, Harris, and Kuhn $[17$, Theorem 7.6] shows that obtaining a poly$(\log n)$ approximation of minimum dominating set within poly$(\log n)$
Network decompositions, first introduced by Awerbuch et al. [3], have been a key tool in developing efficient (deterministic) distributed algorithms for a variety of distributed algorithms. Given an \(n \)-node graph \(G = (V,E) \), a \((d(n),c(n))\)-network decomposition of \(G \) partitions it into a \(c(n) \) vertex-disjoint subgraphs, known as blocks of the decomposition (and indicated via different colors), such that in the subgraph induced by each block, each connected component (which is known as a cluster of this block) has a diameter at most \(d(n) \). See Section 2 for the more formal definition. Awerbuch et al. [3] gave a deterministic algorithm with round complexity \(2^{O(\sqrt{\log n \log \log \log n})} \) for computing a \((d(n),c(n))\)-network decomposition with \(d(n) = c(n) = 2^{O(\sqrt{\log n \log \log n})} \). This was later improved by Panconesi and Srinivasan [31] to a \(2^{O(\sqrt{\log n})} \)-round LOCAL algorithm for decomposition with \(d(n) = c(n) = 2^{O(\sqrt{\log n})} \). While the algorithm of [3] works in the \textsc{CONGEST} model, the algorithm of [31] does require large messages. See also the work of Barenboim et al. [7, Corollary 5.4], where a generalized tradeoff of network decomposition in the \textsc{CONGEST} model is presented.

All of these decomposition algorithms [3,7,31] fail to work in the \textsc{CONGEST} model when we need a larger separation between the clusters of the same block, i.e., when their distance should be two or more hops. This is actually something that significantly limits the power of these network decompositions for \textsc{CONGEST} model algorithms (e.g., for the applications in spanners and dominating sets).

As our third contribution, we present a \textsc{CONGEST} model network decomposition algorithm that can be used to compute a decomposition such that clusters of the same block are at least \(k \) hops apart. The statement of the result is presented below as Theorem 3, the proof of which is deferred to Appendix A of the full version [15], due to space limitations.

\begin{theorem}
Let \(G = (V,E) \) be an \(n \)-node graph and let \(k \geq 1 \) be an integer. There is a deterministic \textsc{CONGEST}-model algorithm that computes a strong diameter \(k \)-hop \((k \cdot f(n), f(n))\)-decomposition of \(G \) in \(k \cdot f(n) \) rounds, where \(f(n) = 2^{O(\sqrt{\log n \log \log n})} \).
\end{theorem}

In the above theorem, \(k \)-hop indicates that the clusters of the same block are at least \(k \) hops apart. See Section 2 for the more formal definition. The above theorem leads to the first efficient deterministic \textsc{CONGEST} model algorithm for neighborhood covers, another basic and central graph structure, which was introduced by Awerbuch and Peleg [5]. We refer to Section 2 for the related technical definition.

\begin{corollary}
Assume that we are given a strong diameter \(2k \)-hop \((d,c)\)-decomposition of a graph \(G \). One can compute a \(c \)-sparse \(k \)-neighborhood cover of diameter \(d + k \) in \(O(c(d + k)) \) rounds in the \textsc{CONGEST} model on \(G \). Consequently, for every \(k \geq 1 \), one
can deterministically compute a $2^{O(\sqrt{\log n \log \log n})}$-sparse k-neighborhood cover of diameter $k \cdot 2^{O(\sqrt{\log n \log \log n})}$ of an n-node graph G in $k \cdot 2^{O(\sqrt{\log n \log \log n})}$ rounds of CONGEST.

1.2 Our Method in a Nutshell, and Comparison with Prior Methods

Our spanner and minimum dominating set algorithms are developed also via network decompositions, but we depart from the standard methodology in two parts. To outline these changes, we first review the standard methodology of algorithms that use network decompositions. We then comment on the shortcomings of this method and outline how we go around each issue.

The standard method for (deterministic) algorithms via Network Decomposition: A standard technique in developing (deterministic) distributed algorithms for local graph problems (formally including Locally Checkable Labelings [30] and any other problem that can be formulated similarly using local constraints) is via the concept of $(d(n), c(n))$-network decompositions. The generic way to use them is to process the blocks sequentially in $c(n)$ phases. In the i^{th} phase, for each connected component of the i^{th} block, one gathers the whole topology of the that component (and perhaps some extra information about neighboring nodes) in an elected center of the component, make that node decide about all (local) decisions of the nodes of the component, and deliver this information back to the nodes. Since different components are disconnected from each other, their decisions do not influence each other and thus can be performed in parallel.

Shortcomings of the Generic Method via Network Decompositions for CONGEST:

The method is perfect for the LOCAL model with arbitrarily large messages. However, when it comes to using small messages—i.e., in the CONGEST model—the method has two shortcomings:

Issue 1 — decompositions on power graphs: For many local problems, the constraints are not only about the direct neighbors of a node but a small neighborhood of a distance $r \geq 2$. For instance, as we will see, in the case of spanner computations this radius r can be as large as $O(\log n)$. In such cases, we need to ensure that connected components of each block are r hops away from each other, instead of just not being adjacent. This is (almost) the same as computing a network decomposition of G^r, which denotes the graph with an edge between two vertices if their distance is at most r hops. The algorithm provided by Awerbuch et al. [3] for computing network decompositions does not seem to extend to computing a decomposition for G^r, because of the congestion that the algorithm creates. We present a CONGEST-model algorithm for network decompositions of power graphs G^r; the formal statement is Theorem 3.

Issue 2 — gathering topology in each component: The generic method of using network decompositions, each component is solved by gathering the whole topology of the component (and some neighborhood outside) and then solving the problem in a brute-force
centralized manner. One can argue that this brute-force centralized computation is quite a stretch for the notion of having a distributed method of solving the problem.

The method we use to go around this issue is a derandomization of randomized distributed algorithms, which can typically solve the local problems that we are considering in poly(log n) rounds. We outline the method here. Most parts are generic and applicable to various problems, except the last part, which is specific to the constraints of each problem. We observe that for many problems, including spanners and dominating set, the corresponding efficient randomized algorithm can be made to work with only poly(log n) bits of randomness, using concepts such as k-wise independence. We refer to these bits as the seed of randomness. Then, derandomization is just a matter of determining a deterministic assignment to these poly(log n) bits while preserving certain properties of the output of the randomized algorithm. For that purpose, following an approach of Luby [29], we use the method of conditional expectations to fix the bits one by one. The only remaining piece of the algorithm is to check whether a bit should be 0 or 1. This requires us to be able to learn, or estimate, the expected number of unsatisfied local constraints. This last part will be done using a method specific for each problem, depending on its constraints.

We note that this second part of our contribution as described in issue 2 above — namely, the method of conditional expectation applied on a random algorithm that uses only poly(log n) bits of randomness overall — is inspired by the work of Luby [29] in parallel algorithms and the recent work of Censor-Hillel, Parter, and Schwartzman [9] in distributed CONGEST and CONGESTED-CLIQUE model algorithms. Let us explain how our approach differs from that of [9], thus allowing us to improve on the bounds of [18].

Censor-Hillel [9] give an O(D log^2 n)-round CONGEST algorithm for maximal independent set (MIS), by derandomizing the randomized MIS algorithm of [16], using a method of conditional expectation close to Luby [29]. The key difference there is that (1) the complexity depends on the global diameter D, (2) for MIS, each of the constraints in the method of conditional expectation spans only the neighbors of one node and therefore, computing an upper bound on the score/cost function is much easier. In our case, we want a complexity that is considerably sublinear in the diameter, which calls for network decompositions. Moreover, for spanner and dominating set (and presumably many other local problems), the constraints span k-hop neighborhoods for some k ≥ 2, instead of direct neighborhood. This causes two challenges: (A) we need a network decomposition of the power graphs, which prior to our work was not known in the CONGEST model, as explain above in issue 1. (B) Even computing each part of the score/cost function now spans some k-hop neighborhood for some k ≥ 2, and evaluating it with CONGEST-model messages requires a different method.

Censor-Hillel et al. [9] also give a derandomized spanner algorithm in the CONGESTED-CLIQUE model, where all node-pairs can communicate with each other, exchanging O(log n) bits per round. This also follows a derandomization method inspired by that of Luby [29]. However, again there two differences, which limit that result from extending to our setting: (A) this derandomization does not need to work with network decompositions and especially power-graph network decompositions, because everything is within one hop in the CONGESTED-CLIQUE and one can share the seed of randomness to all nodes, (B) computing the score/cost function, which spans k-hop neighborhoods, is much easier in the
CONGESTED-CLIQUE, because this model does not suffer from the locality constraint.

In both cases above, both of the issues appear quite non-trivial to us. Indeed, Censor-Hillel et al. [9] comment that the best deterministic CONGEST algorithm for spanners takes barely sublinear time, $O(n^{1-1/k})$ rounds to be precise. That is much higher than the sub-polynomial time that we achieve. This $O(n^{1-1/k})$ bound was improved to nearly $O(\sqrt{n}) - O(n^{1/2 - 1/k} \cdot 2^k)$ rounds to be precise — in the simultaneous work of Grossman and Parter [18], using a special and well-crafted deterministic method for constructing spanners, and particularly without attempting a derandomization. We now show that the derandomization techniques can be extended and improved, along with the strengthened power-graph network decomposition, to achieve a round complexity $2^{O(\sqrt{\log n \cdot \log \log n})}$ rounds.

Some Other Related Work: Ghaffari, Harris, and Kuhn [17] also use some variant of a method of conditional expectation to obtain derandomized distributed algorithms, but for all of their results, locality is the main topic, and their algorithms use large messages. Kawarabayashi and Schwartzman [21] present distributed derandomizations for some other problems, including max cut and max k-cut. These work by turning a sequential process to a distributed process by going through the colors of a certain (defective) graph coloring one by one. However, those methods cannot extend to the problems that we consider as there the score/cost functions are very local (spanning single neighborhoods), whereas in our case, the constraints span up to $\log n$-neighborhood, which means a suitable coloring would require even up to polynomial many colors.

2 Model and Definitions

Mathematical Notation: For a graph $G = (V, E)$ and two nodes $u, v \in V$, we define $d_G(u, v)$ to be the hop distance between u and v. For an integer $k \geq 1$, we define $G^k = (V, E')$ to be the graph with an edge $\{u, v\} \in E'$ whenever $d_G(u, v) \leq k$. Given a node $v \in V$, we use $N_{G,k}(v) := \{u \in V : d_G(u, v) \leq k\}$ to denote the set of nodes within distance k of v in G. For a node set $S \subseteq V$, we use the shorthand notation $N_{G,k}(S) := \bigcup_{v \in S} N_{G,k}(v)$ and we drop the subscript G if it is clear from the context. Throughout, we use $\ln(\cdot)$ to refer to natural logarithm and $\log(\cdot)$ to refer to logarithms to base 2. Moreover, for a graph $G = (V, E)$, integers $a \geq 1$ and $b \geq 0$ and a node set $V' \subseteq V$, a set of nodes $S \subseteq V'$ is called an (a, b)-ruling set of G w.r.t. V' [3] if (A) for any two nodes $u, v \in S$, we have $d_G(u, v) \geq a$, and (B) $\forall u \in V' \setminus S$, there is a node $v \in S$ such that $d_G(u, v) \leq b$. If $V' = V$, S is simply called an (a, b)-ruling set of G.

Network Decomposition: A network decomposition of a graph G is given by a clustering of G and a coloring of the graph induced by contracting each cluster. We therefore first define the notion of a cluster graph.

Definition 5 (Cluster Graph). Given a graph $G = (V, E)$ and an integer parameter $d \geq 1$, an (N, d)-cluster graph $G = (\mathcal{V}, \mathcal{E})$ of G is a graph that is given by a set of $N \geq 1$ clusters $\mathcal{V} := \{C_1, \ldots, C_N\} \subseteq 2^V$ such that (a) the clusters C_1, \ldots, C_N form a partition of V, (b) each cluster C_i induces a connected subgraph $G[C_i]$ of G, (c) each cluster C_i has a leader node $\ell(C_i)$ that is known by all nodes of C_i, and (d) inside each cluster, there is a rooted spanning tree $T(C_i)$ of $G[C_i]$ that is rooted at $\ell(C_i)$ and has diameter at most d. There is an edge $\{C_i, C_j\}$ between two clusters $C_i, C_j \in \mathcal{V}$ if there is edge in G connecting a node in C_i to a node in C_j. The identifier ID(C_i) of a cluster C_i is its leader’s ID.

Given a cluster graph $G = (\mathcal{V}, \mathcal{E})$ of G and an integer $k \geq 1$, we say that two clusters $C, C' \in \mathcal{V}$ are k-separated if for any two nodes u and v of G such that $u \in C$ and $v \in C'$,
we have $d_G(u, v) > k$. A strong-diameter k-hop network decomposition of a graph G is then defined as follows.

Definition 6 (Network Decomposition). Let $G = (V, E)$ be a graph and let $k \geq 1$, $d \geq 0$, and $c \geq 1$ be integer parameters. A strong diameter k-hop (d, c)-decomposition of G is a (N, d)-cluster graph \mathcal{G} of G for some integer $N \geq 1$ together with a coloring of the clusters of \mathcal{G} with colors $\{1, \ldots, c\}$ such that any two clusters with the same color are k-separated.

Sparse Neighborhood Covers: The notion of sparse neighborhood covers as introduced by Awerbuch and Peleg [5] is closely related to network decompositions.

Definition 7 (Sparse Neighborhood Cover). Let $G = (V, E)$ be a graph and let $k \geq 1$, $d \geq 1$, and $s \geq 1$ be three integer parameters. An s-sparse k-neighborhood cover of diameter d is a collection of clusters $C \subseteq V$ such that (a) for each cluster C, we have a rooted spanning tree of $G[C]$ of diameter at most d, (b) each k-neighborhood of G is completely contained in some cluster, and (c) each node of G is in at most s clusters.

As we explain in the proof of Corollary 4, any $2k$-hop (d, c)-decomposition leads to a c-sparse k neighborhood cover of diameter $d + k$.

3 Hitting Set

In this section, we define an abstract problem, which we call the hitting set problem. This problem, which can be solved easily using randomized algorithms, captures a variety of the usual applications of randomness in distributed algorithms. In this section we provide a deterministic algorithm for solving this hitting set problem. In the later sections, we see how to use this deterministic subroutine to develop deterministic algorithms for other problems such as spanners and minimum dominating set, primarily by replacing their randomized parts with this deterministic hitting set subroutine.

Our main formulation of the hitting set problem (which is presented below in Definition 8 and solved in Lemma 9) is tailored to its usage in our spanner result. At the end of this section, in Lemma 10, we provide an alternative formulation and the corresponding deterministic algorithm, which are more suitable for our minimum dominating set result. The proofs are quite similar.

Definition 8 (The Hitting Set Problem). Consider a graph $G = (V, E)$ with two special sets of nodes $L \subseteq V$ and $R \subseteq V$ with the following properties: each node $\ell \in L$ knows a set of vertices $R(\ell) \subseteq R$, where $|R(\ell)| = \Theta(p \log n)$, such that $\text{dist}_G(\ell, r) \leq T$ for every $r \in R(\ell)$. Here, p and T are two given integer parameters in the problem. Moreover, there is a T-round CONGEST algorithm that can deliver one message from each node $r \in R$ to all nodes $\ell \in L$ for which $r \in R(\ell)$. We emphasize that the same message is delivered to all nodes $\ell \in L$.

Given this setting, the objective in the hitting set problem is to select a subset $R^* \subseteq R$ such that (I) R^* dominates L—i.e., each node $\ell \in L$ has at least one node $r^* \in R^*$ such that $\ell \in R(r^*)$—and (II) we have $|R^*| \leq |R|/p$.

Lemma 9. Given a $2T$-hop (d, c)-decomposition of the graph G of the hitting set problem, there is a deterministic distributed algorithm that in $\tilde{O}(c(d + T))$ rounds solves the hitting set problem.
Proof. The trivial randomized algorithm includes each node of R in R^* with probability $1/(2p)$. It is easy to verify that this satisfies the requirements (I) and (II), with high probability. In this proof, we develop a deterministic algorithm for solving the hitting set problem, effectively by derandomizing this randomized process. This derandomization has four aspects, which we discuss one by one.

Point 1—Transforming the Requirements to One Cost Function: We try to capture the requirements (I) and (II) with one cost function. In particular, we define a cost function for any fixed set $R^* \subseteq R$ as follows. Consider the following indicator (random) variables: for each node $\ell \in L$, define $x_{\ell} = 1$ iff $R(\ell) \cap R^* = \emptyset$. Moreover, for each node $r \in R$, define $y_r = 1$ iff $r \in R^*$. Define the cost function as $Z = \sum_{\ell \in L} x_{\ell} + \sum_{r \in R} y_r$. Notice the value is clearly a function of the choice of $R^* \subseteq R$. Furthermore, it is easy to see that in the natural randomized algorithm that includes each node of R in R^* with probability $1/(2p)$, we have $E[Z] \leq |R|/(2p) + 1/n^2$. This is because $E[\sum_{r \in R} y_r] = \sum_{r \in R} E[y_r] = \sum_{r \in R} 1/(2p) = R/(2p)$. Moreover, for each $\ell \in L$, we have $E[x_{\ell}] = Pr[x_{\ell} = 1] = (1 - 1/(2p))^{\Theta(p \log n)} \leq 1/n^3$, which implies $E[\sum_{\ell \in L} x_{\ell}] \leq 1/n^2$.

During the next three points presented below, we will describe a deterministic process for selecting R^* such that the related cost is at most $|R|/(2p) + 1/n$. Notice that this still does not mean that R^* satisfies (I). To take care of that issue, we perform the following clean up step, which has round complexity T, at the end: Suppose we have already chosen a subset $R^* \subseteq R$ such that the cost $Z = \sum_{\ell \in L} x_{\ell} + \sum_{r \in R} y_r$ of this selected set R^* is at most $|R|/(2p) + 1/n$. The number of nodes $\ell \in L$ for which $R(\ell) \cap R^* = \emptyset$ is $\sum_{\ell \in L} x_{\ell}$.

By definition, these are exactly the vertices for which requirement (I) is not satisfied. For each such node ℓ, we mark one node $r \in R(\ell)$ arbitrarily and add the marked nodes to R^*. This can be done in T rounds by reversing the communication from R to L, now delivering one bit to each node $r \in R$ of whether any of the nodes $\ell \in L$ for which $r \in R(\ell)$ marked r or not.

These marked nodes, which are added to R^*, increase the size of R^* by at most $\sum_{\ell \in L} x_{\ell}$. Thus, the total new size of R^* is at most $\sum_{r \in R} y_r + \sum_{\ell \in L} x_{\ell} \leq |R|/(2p) + 1/n \leq R/p$. Hence, now we have a set R^* that satisfies all the requirements (I) and (II).

Point 2—Limited Independence SUFFICES: Next, we describe how we derandomistically select a set R^* with cost at most $Z \leq |R|/(2p) + 1/n$. To be able to pick such a set R^* deterministically, it is helpful to have a randomized process that uses only a small number of random bits. For this reason, we first explain how to replace the fully random process of selecting R^* nodes with another random process that uses less randomness, in a certain sense to be formalized, but still provides the same guarantee on the expected cost. We will then derandomize this randomness-efficient random process.

Let us think of the decisions of whether a node $r \in R$ is included in R^* or not as a function $f : R \rightarrow \{0, 1, 2, \ldots, 2p - 1\}$ where $f(r) = 0$ means $r \in R^*$ and all other values mean $r \notin R^*$. Notice that if for each $r \in R$, $f(r)$ is chosen uniformly at random from $\{0, \ldots, 2p - 1\}$, then we have $Pr[r \in R^*] = 1/(2p)$, as desired. Following standard terminology, we say that a family \mathcal{F} of functions $f : R \rightarrow \{0, 1, 2, \ldots, 2p - 1\}$ is k-wise independent if for any set $S = \{s_1, s_2, \ldots, s_k\} \subseteq R$ with $|S| = k$ and any choice of values $b_1, b_2, \ldots, b_k \in \{0, 1, 2, \ldots, 2p - 1\}$, we have that

$$Pr_{f \in \mathcal{F}}[f(s_1) = b_1 \& \ldots \& f(s_k) = b_k] = (1/(2p))^k.$$

That is, upon selecting a function f uniformly at random from \mathcal{F}, the probability of the values of f over set S is exactly the same as in the fully random function. The advantage
of \(k \)-wise independent functions is that the corresponding family is quite small and thus, we can choose one function in the family using considerably less randomness. This is made more clear in the next point. Moreover, they still provide many of the nice behaviors expected from truly random functions. In particular, using the extensions of standard Chernoff bound to functions with limited independence [34], we can see that if the selection function for choosing \(R^* \) out of \(R \) is \(k = \Theta(\log n) \)-wise independent (i.e., if it is chosen randomly from a \(k \)-wise independent family), then we still have a concentration within a constant factor what would be implied by the standard Chernoff bound. More concretely, we still have \(\Pr[|Z| = 1] \leq 1/n^3 \) for each \(\ell \in L \). Hence, even with a \(k \)-wise independent selection function \(f \), we have that the expected cost is small as desired, i.e., \(\mathbb{E}[Z] \leq |R|/(2p) + 1/n^2 \).

Point 3—Defining a \(k \)-wise Independent Selection Process: To define a \(k \)-wise independent selection function in a manner that is suitable for our network decomposition, we use an independent function for the vertices of each cluster \(C \) of the decomposition. Hence, we have full independence among different colors and even among clusters of the same color. However, inside each cluster \(C \), the selections are made using one \(k \)-wise independent function \(g(C) : R \cap C \to \{1, 2, \ldots, 2p\} \). One can easily see that such a combination of independent random functions, each of which is \(k \)-wise independent, is also a \(k \)-wise independent function.

To select a \(k \)-wise independent selection function for cluster \(C \), we rely on classic constructions of \(k \)-wise independent functions. It is known [1] that there is a family \(\mathcal{G} \) of \(n^{O(k)} \) deterministic functions such that if we pick one function from \(\mathcal{G} \) uniformly at random, we have a \(k \)-wise independent random function. This family can be known to all nodes of the cluster; they can all construct it by following the deterministic sequential construction of [1]. To randomly and uniformly sample one member of this family \(\mathcal{G} \), which has \(n^{O(k)} \) members, merely \(O(k \log n) \) bits of randomness suffice. Hence, by using a random function defined via \(O(k \log n) = O(\log^2 n) \) bits of randomness for each cluster, we can define a random selection function for vertices of \(R \) which ensures that \(\mathbb{E}[Z] \leq |R|/(2p) + 1/n^2 \).

Point 4—Fixing the Bits of Randomness: We now fix the bits of randomness in the above random selection of \(R^* \), in \(c \) phases. In the \(i^{th} \) phase, we decide about the vertices of \(R \) that are in the \(i^{th} \) color of network decomposition, whether to include each of them in \(R^* \) or not. This gradual process will be such that, at each point of time, the conditional expectation of the cost function, conditioned on the already decided vertices, is at most \(|R|/(2p) + 1/n^2 \). Hence, once we finish the process, a set \(R^* \) is selected with cost at most \(|R|/(2p) + 1/n^2 \).

Fix a color \(i \). We fix the bits of randomness in each cluster of color \(i \). Since clusters of this color are at least \(2T \) hops apart in \(G \), each variable \(x_\ell \) or \(y_r \) in the cost function \(Z = \sum_{\ell \in L} x_\ell + \sum_{r \in R} y_r \) is influenced by the randomness fixing of at most one cluster. Hence, each cluster \(C \) can fix its own randomness independent of the other clusters.

Let us focus on one cluster \(C \) in color \(i \). We have a family of \(\mathcal{G} \) of \(n^{O(k)} \) deterministic functions for the selection of the \(R^* \)-nodes among \(R \cap C \). We pick one function from \(\mathcal{G} \) by fixing the corresponding bits of randomness one by one, in a manner that does not increase the conditional expectation of \(Z \), given prior assignments. Imagine that all the functions in the family \(\mathcal{G} \) are indexed with numbers from 1 to \(n^{O(k)} \), and suppose that these indices are written as binary numbers with \(O(k \log n) \) bits. Consider the process of fixing the first bit; the next bits are similar. Break the family \(\mathcal{G} \) of \(n^{O(k)} \) assignment functions into two subfamilies, \(\mathcal{G}_0 \) which are those that their function index starts with bit 0, and \(\mathcal{G}_1 \) which
are those that their function index starts with bit 0. For each subfamily, we compute the conditional expectation of \(Z \) over the variables in \(N^T(C) \)—i.e., the \(T \)-hop neighborhood of cluster \(C \)—when the assignment function is chosen uniformly at random from this subfamily. We then fix the first bit of randomness according to whichever leads to a smaller expectation, i.e., that is, we zoom in to one of subfamilies \(\mathcal{G}_0 \) and \(\mathcal{G}_1 \), in our search for a deterministic assignment function. We next explain why the expectation of \(Z \) over the variables in \(N^T(C) \) can be computed in \(O(d + T) \) time.

We first spend \(T \) rounds to deliver one message from each node \(r \in R \) to all nodes \(\ell \in L \) for which \(r \in R(\ell) \). In this message, node \(r \) reports its color and cluster center ID, and whether node \(r \) has been put in \(R^* \) or not if the color of \(r \) was some \(j < i \). Thus, each node \(\ell \) in \(N^T(C) \cap L \) can learn whether it is already hit or not, i.e., whether any of the nodes in \(R(\ell) \) in the previous color clusters has been fixed to be in \(R^* \) or not. If there is already some such node \(r \in R(\ell) \cap R^* \), then \(x_\ell = 0 \) and it will not change. If not, the expectation of \(x_\ell \) can change by the assignments in \(C \). In this case, node \(\ell \) can exactly compute \(\mathbb{E}[x_\ell] = \Pr[x_\ell = 1] \) because it knows all the nodes in \(R(\ell) \), those of colors less than \(i \) that their decisions have been made in the previous phases, the identifiers of those that are being decided in this phase, the colors and cluster identifiers of those with colors greater than \(i \) which will be decided in the next phases, and also the subfamily \(\mathcal{G}_0 \) or \(\mathcal{G}_1 \) in consideration. Similarly, each node \(r \in R \cap C \) can compute \(\mathbb{E}[y_r] \) because that only depends on the identifier of the node \(r \) and the subfamily \(\mathcal{G}_0 \) or \(\mathcal{G}_1 \) in consideration. Then, we can spend \(d \) rounds to perform a convergecast on the tree of cluster \(C \) to gather the summation of these expectations at the root.

Once these two expectations are gathered at the root of the cluster \(C \), we go with the smaller one and zoom into the corresponding subfamily, among \(\mathcal{G}_0 \) or \(\mathcal{G}_1 \). This fixes the first bit of randomness in \(C \) but does not increase the conditional expectation of the cost function compared to when the assignment function was chosen from \(\mathcal{G} \). We then proceed to the next bit. After going through all the \(O(k \log n) = O(\log^2 n) \) bits, which takes \(O(d \log^2 n) \) rounds, we have fixed all the bits and thus we have chosen a deterministic assignment for the \(R \) vertices of cluster \(C \) in a manner that did not increase the conditional expectation of the cost function. This finishes the process for one color. We then proceed to the next color and perform a similar process. After going through all colors, which takes \(\tilde{O}(c(d + T)) \) rounds, we have found a set \(R^* \subseteq R \) such that the cost \(Z = \sum_{\ell \in L} x_\ell + \sum_{r \in R} y_r \) of this selected set \(R^* \) is at most \(|R|/(2p) + 1/n \). As described in point 1 above, this set \(R^* \) can be augmented to satisfy all the requirements of the hitting set problem, in \(T \) additional rounds.

A Modified Variant of Hitting Set: We can use a similar method to derive a solution for a slightly modified variant of the hitting set problem, as stated in the following lemma. We will use this variant in our minimum dominating set approximation algorithm.

\begin{lemma}[An Alternative Hitting Set Lemma] Let \(H = (L \cup R, E) \) be a bipartite graph and let \(p \geq 1 \) be an integer parameter. Further assume that there is a spanning tree of diameter \(D \) that spans all nodes of \(H \) and that we can use the edges in \(E \) and the

\footnote{We note that in the CONGEST model, we may not be able to convergecast the full precision of the expectation, but may need to truncate it to \(\Theta(\log n) \) bits of precision. This would increase the expectation by at most \(1/\text{poly}(n) \). This is negligible even over all the at most \(n \) iterations that we perform such a convergecast and subfamily selection.}
spanning tree edges for communication. There is a deterministic $\tilde{O}(D)$-time CONGEST-model algorithm that selects a subset $R^* \subseteq R$ of the nodes in R such that the following conditions hold:

(a) For all nodes $u \in L$, the number of neighbors in R^* is at most $O(\deg(u)/p + \log n)$.
(b) For all nodes in $u \in L$ with $\deg(u) \geq cp \log n$ for a sufficiently large constant $c > 0$, at least one neighbor of u is in R^*.

Proof. The proof follows the same lines as Lemma 9, except a few small changes, which we explain here. Again, the randomized algorithm where each node in R is put in R^* with probability $1/p$ satisfies all the requirements with high probability. We explain how to derandomize this algorithm.

Now, the cost function Z for any set $R^* \subseteq R$ is defined as follows: For each $u \in L$, define the indicator random variable x_u which is equal to 1 if and only if $|R^* \cap N_H(u)| \geq 100(\deg(u)/p + \log n)$ and 0 otherwise. Here, $N_H(u)$ denotes the set of neighbors of u in graph H. Also, define the indicator random variable x'_u which is equal to 1 if and only if $\deg(u) \geq cp \log n$ and $R^* \cap N_H(u) = \emptyset$, and 0 otherwise. Define $Z = \sum_{u \in L} x_u + x'_u$.

Notice that by a standard application of Chernoff bound, we have $Pr[x_u = 1] \leq 1/n^4$ and $Pr[x'_u] \leq 1/n^4$. Hence, $\mathbb{E}[Z] \leq 1/n^2$. In fact, by the extension of Chernoff bound to k-wise independent random variables [34], we can see that the same is true if the selection function for choosing R^* out of R is $k = \Theta(\log n)$-wise independent. This allows us to replace the seed of randomness for selecting R^* with merely $O(k \log n) = O(\log^2 n)$ bits, via standard k-wise independent random function generators [1]. This part is identical to Lemma 9.

The only remaining change is that, in proving Lemma 10, since we only desire a run time of $\tilde{O}(D)$, we do not need to use network decompositions and the task of fixing the bits of randomness seed is just easier; this is essentially as if we have only one color and only one cluster in that color, in the network decomposition assumed in the proof of Lemma 9.

We can now process the $O(\log^2 n)$ bits of the seed of randomness one by one, and apply the method of conditional expectation on each bit, similar to Lemma 9. Each time each node $u \in L$ can compute its expected contribution to the cost function simply because it knows its own degree and also the identifiers of all of its neighbors. Thus, fixing each bit can be done in $O(D)$ rounds, by gathering the two expected costs for the two choices of 0 or 1 for the bit under consideration. Thus, the overall round complexity until all bits are fixed is $O(D \log^2 n)$. At the end, the cost remained below the initial expected cost, which was $1/n^2$. Since at the end the cost is an integer value—because it is a summation of (deterministic) indicator variables—and as it is at most $1/n^2$, it must be 0. That is, all the indicator variables are 0, which means all the requirements of the lemma are satisfied.

4 Spanners

Here, we present the proof of Theorem 1, i.e., we develop a deterministic distributed algorithm for computing spanners by derandomizing the algorithm of Baswana and Sen [8], using our hitting set. We first briefly recall the algorithm of Baswana and Sen.

Baswana-Sen’s Spanner Algorithm: The algorithm has k levels, where we gradually build, and sometimes dissolve clusters. At level i, each cluster induces a tree of depth at most $i-1$ rooted at the corresponding cluster center. Initially, each node is one cluster. In the i^{th} level for $i \in \{1, 2, \ldots, k-1\}$, each cluster of the previous level is active with probability $n^{-1/k}$ and inactive otherwise. This randomized decision is made by the corresponding cluster center. Then, inactive clusters get dissolved and their nodes either join other clusters or get
dropped from the algorithm permanently. For each node \(v \) in an inactive cluster, if it has a neighbor in an active cluster, then \(v \) joins the cluster of one such neighbor \(u \), and adds the edge \(\{ v, u \} \) to the tree of that cluster. If \(v \) has no neighbor in an active cluster, then \(v \) gets dropped from the rest of the algorithm. But just before that, for each inactive cluster \(\mathcal{C} \) that contains a neighbor of \(v \), node \(v \) adds to the spanner one edge to some neighbor in \(\mathcal{C} \).

Moreover, for each cluster of this level, we add the corresponding tree rooted in the cluster center to the spanner. This finishes level \(i \), and we then proceed to the next level. In the very last level, all clusters are considered inactive and we act accordingly.

Properties of the Spanner algorithm of Baswana and Sen:

1. **Round Complexity:** Clearly, the \(i \)th level can be implemented in \(O(i) \) rounds of the CONGEST model and thus the whole algorithm takes \(O(k^2) \) rounds.

2. **Stretch:** Eventually, all clusters are dissolved. For each edge \(\{ v, u \} \) in the graph, suppose without loss of generality that \(v \) gets dropped from the clustering no later than \(u \). Then, an edge is added to the spanner from \(v \) to some node \(w \) in the cluster of \(u \). If \(w = u \), edge \(\{ v, u \} \) is in the spanner. Otherwise, there is an alternate route to go from \(v \) to \(u \) in the spanner by going to \(w \) and then using the cluster tree of \(u \) at that level; potentially going from \(w \) to its cluster center and then coming back to \(u \). Since the tree has depth at most \(i - 1 \leq k - 1 \), the whole path has length at most \(2k - 1 \). That is, edge \(\{ v, u \} \) has stretch at most \(2k - 1 \).

3. **Spanner Size:** The total number of cluster tree edges, over all levels, is \(O(nk) \). Each node gets dropped in some level, when it has no active neighboring cluster, and then adds one edge connecting it to each (inactive) neighboring cluster to the spanner. If the node has more than \(\Theta(n^{1/k} \log n) \) neighboring clusters, w.h.p., it will have an active neighboring cluster. So the number of added edges per node is with high probability no more than \(\Theta(n^{1/k} \log n) \). This is also true for the last level as there the total number of clusters is \(\Theta(n^{1/k}) \), w.h.p. Hence, the total number of edges in the spanner is \(O(kn^{1+1/k} \log n) \), w.h.p.\(^4\)

Derandomization—Abstracting the Properties of the Random Selection: The only part of this algorithm that relies on randomness is the step of selecting active clusters. As can be seen in the analysis, it suffices that this (random) selection satisfies the following two properties, per level: (1) nodes that have more than \(d = \Theta(n^{1/k} \log n) \) neighboring clusters will have at least one active cluster, (2) if the number of clusters in this level is \(R \geq \Theta(n^{1/k} \log n) \), the number of active clusters is at most \(R \cdot n^{-1/k} \). The former ensures that the number of edges added per node in a level \(i \in \{1, 2, \ldots, k - 1\} \) is at most \(\Theta(n^{1/k} \log n) \). The latter follows from Chernoff bound. Because of having this property in all levels, it follows that the total number of clusters at the last level is \(O(n^{1/k} \log n) \). Hence, the number of added edges per node in that level is \(O(n^{1/k} \log n) \).

Derandomization via Deterministic Hitting Set Computations: We can formulate the above two properties as a direct instance of the hitting set problem discussed in Definition 8, as follows: We set \(p = n^{1/k} \) and \(T = i + 1 \leq O(\log n) \). Moreover, we make each node that has at least \(d = \Theta(n^{1/k} \log n) \) neighboring clusters be one node in \(L \) and each cluster center one node in \(R \). Clearly, each node \(\ell \in L \) can know \(\Theta(p \log n) \) nodes of \(R \) that are

\(^4\)With slightly more care, one can show that this number is actually \(O(kn^{1+1/k}) \), with high probability.
within its \(i+1 \leq k+1 \leq O(\log n)\) hops, these are the vertices in \(R(\ell)\). We can also deliver one message from each \(r \in R\) to all vertices \(\ell \in L\) for which \(r \in R(\ell)\) in \(T\) rounds. For that, we simply do a broadcast in the cluster centered at \(r\) and then pass it on to all neighboring nodes including \(r\). These provide all that we need to set up the hitting set problem. Moreover, we also use a \(2T\)-hop \((d, c)\)-decomposition of graph \(G\), for \(d = c = 2^{O(\sqrt{\log n \log \log n})}\), which can be computing using Theorem 3 in \(2^{O(\sqrt{\log n \log \log n})}\) rounds. We can now invoke the deterministic hitting set algorithm of Lemma 9, which runs in \(2^{O(\sqrt{\log n \log \log n})}\) rounds. That provides a subset \(R' \subseteq R\) with size at most \(R/p = R \cdot n^{-1/k}\) such that each node \(\ell \in L\) has at least one node in \(R' \cap R(\ell)\). That is, each node that has more than \(\Theta(n^{1/k} \log n)\) neighboring clusters will have at least one active cluster. These satisfy the two properties abstracted above, thus providing us with a deterministic selection of active clusters in each iteration of Baswana-Sen, hence completing the proof of Theorem 1.

5 Minimum Set Cover and Dominating Set

Consider a set cover instance \((X, \mathcal{S})\) consisting of a set \(X\) of elements and a set \(\mathcal{S} \subseteq 2^X\) of subsets of \(X\) such that \(\bigcup_{A \in \mathcal{S}} A = X\). The objective of the minimum set cover problem is to select a subset \(\mathcal{C} \subseteq \mathcal{S}\) of the sets in \(\mathcal{S}\) such that \(\bigcup_{A \in \mathcal{C}} A = X\) and such that the cardinality of \(\mathcal{C}\) is minimized. As standard (see e.g., [2]), we model the set cover instance \((X, \mathcal{S})\) as a distributed graph problem by defining a bipartite network graph that has a node \(u_x\) for each element \(x \in X\) and a node \(v_A\) for each set \(A \in \mathcal{S}\) and that contains an edge \(\{u_x, v_A\}\) whenever \(x \in A\). We also note that one can solve the distributed minimum dominating set problem on a graph \(G = (V, E)\) by using a distributed set cover algorithm and applying it to the corresponding set cover instance (where each node \(v \in V\) represents an element and a set and where the set corresponding to a node \(v\) contains \(v\), as well as all neighbors of \(v\) in \(G\)). The network graph of the set cover instance for the dominating set problem on \(G\) is given by the bipartite cover of \(G\) and a CONGEST-model algorithm on the bipartite cover of \(G\) can be run on the CONGEST model on \(G\) in the same time.

In the following, we assume that we are given a set cover instance \((X, \mathcal{S})\) and that \(G = (V_X \cup V_S, E)\) is the bipartite \(n\)-node graph corresponding to the given set cover instance. We further assume that for some \(d(n) \geq 1\) and \(c(n) \geq 1\), a strong diameter 2-hop \((d(n), c(n))\)-decomposition of \(G\) is given. Recall that for \(d(n) = c(n) = 2^{O(\sqrt{\log n \log \log n})}\), such a decomposition can be computed in \(2^{O(\sqrt{\log n \log \log n})}\) rounds on \(G\) (cf. Theorem 3).
We first describe the algorithm to compute a small set cover of \((X, S)\). The algorithm can be seen as a distributed variant of the well-known sequential greedy algorithm. The algorithm starts with an empty set cover and it consists of a sequence of steps in which several sets of \(S\) are added to the set cover in parallel. Throughout the algorithm, we trace some properties of the subproblem that still has to be solved. For every set \(A \in S\), we use \(\delta(A)\) to denote the number of uncovered elements of \(A\) (i.e., at the beginning of the algorithm, we have \(\delta(A) = |A|\) and at the end, we need to have \(\delta(A) = 0\)). Further, for every element \(x \in X\), for each of the colors \(c \in \{1, \ldots, c(n)\}\) of the given 2-hop decomposition of \(G\), and for some parameter \(d \geq 1\), we define the degree-\(d\), color-\(c\) support \(s(x, c, d)\) of \(x\) as follows. If \(x\) is already covered, we have \(s(x, c, d) = 0\), otherwise, \(s(x, c, d)\) is defined to be the number of sets \(A \in S\) such that \(x \in A\), \(A\) is in a cluster of color \(c\), and \(\delta(A) \geq d\). The algorithm consists of \([\log n]\) stages \(i = 1, 2, \ldots, [\log n]\) and each stage consists of \([\log n]\) phases \(j = 1, \ldots, [\log n]\). The algorithm guarantees that throughout stage \(i \in \{1, \ldots, [\log n]\}\), for all sets \(A \in S\), it holds that \(\delta(A) < n/2^{i-1}\), i.e., in each stage, the upper bound on the maximum remaining set size is halved. Further, for each stage \(i \in \{1, \ldots, [\log n]\}\) and each phase \(j \in \{1, \ldots, [\log n]\}\), it holds that \(s(x, c, n/2^j) < n/2^{j-1}\) for all \(x \in X\) and all \(c \in \{1, \ldots, c(n)\}\). Further, each phase consists of \(c(n)\) steps. The pseudocode of the whole set cover algorithm is given by Algorithm 1.

\textbf{Lemma 11.} For all \(i, j \in \{1, \ldots, [\log n]\}\) and all cluster colors \(c \in \{1, \ldots, c(n)\}\), throughout stage \(i\) and phase \(j\) of Algorithm 1, it holds that

(a) for every \(A \in S\), we have \(\delta(A) < n/2^{i-1}\),

(b) for every \(x \in X\), we have \(s(x, c, n/2^j) < n/2^{j-1}\),

(c) at the end of step \(c\), for every \(x \in X\), we have \(s(x, c, n/2^j) < n/2^j\).

\textbf{Proof.} We prove (a)–(c) by induction on \(i, j\), and \(c\). First, note that (a) holds for \(i = 1\) because the bipartite graph \(G\) representing the set cover instance has \(n\) nodes. Because there needs to be at least one set and at least one element in every set cover instance, we thus have \(|S| < n\) and \(|X| < n\). Further note that if (a) is true for some stage \(i\), then (b) holds for the given stage \(i\) and \(j = 1\) for the same reason. Also note that (b) and (c) always hold for all covered elements \(x\) because in this case we defined \(s(x, c, n/2^j)\) to be 0.

We next prove that (b) implies (c). Step \(c\) of stage \(i\) and phase \(j\) guarantees that for each element \(x \in X_{i,j,c}\) (i.e., for each element for which \(s(x, c, n/2^j) \geq n/2^j\)), there is a set \(A \in S'\) such that \(x \in A\). Consequently \(x\) is covered after the step and thus \(s(x, c, n/2^j) = 0\). By condition (c), after all the \(c(n)\) steps of stage \(i\) and phase \(j\), we have \(s(x, c, n/2^i) < n/2^{i-1}\) and thus if \(j < [\log n]\), condition (b) also holds for stage \(i\) and phase \(j + 1\). To also prove the induction step for condition (a), consider the end of phase \(j = [\log n]\) of stage \(i\). By (c), we have \(s(x, c, n/2^j) < n/2^{[\log n]} \leq 1\) and thus \(s(x, c, n/2^j) = 0\) for all \(x \in X\) and all \(c \in \{1, \ldots, c(n)\}\). This implies that there is no set \(A \in S\) left with \(\delta(A) \geq n/2^i\).

\textbf{Lemma 12.} Given a strong diameter 2-hop \((d(n), c(n))\)-decomposition of \(G\), Algorithm 1 can be implemented deterministically in \(\tilde{O}(d(n) \cdot c(n))\) rounds in the CONGEST model on \(G\).

\textbf{Proof.} The algorithm consists of \(O(\log n)\) stages, \(O(\log n)\) phases per stage, and \(c(n)\) steps per phase. The total number of steps is therefore \(O(c(n) \log^2 n) = \tilde{O}(c(n))\). To prove the claim of the lemma, we thus need to show that each step can be implemented in \(\tilde{O}(d(n))\) rounds in the CONGEST model on \(G\). Consider some stage \(i\), some phase \(j\), and some step \(c\) in stage \(i\) and phase \(j\). Recall that \(S_{i,c} \subseteq S\) contains all sets \(A \in S\) that are in clusters of color \(c\) of the given network decomposition and for which \(\delta(A) \geq n/2^i\) at the beginning
of step c of phase j of stage i. Let $X_{i,c}$ be the set of uncovered elements of the sets in $\mathcal{S}_{i,c}$. Consider the subgraph $G_{i,c}$ of the set cover graph G that is induced by nodes corresponding to the elements in $X_{i,c}$ and the sets in $\mathcal{S}_{i,c}$. Note that for some element $x \in X_{i,c}$, $s(x,c, n/2^i)$ is the degree of the corresponding node in $G_{i,c}$. The algorithm needs to select a subset \mathcal{S}' of the sets in $\mathcal{S}_{i,c}$ such that for each $x \in X_{i,c}$, the number of selected sets containing x is at most $O(n/\log n)$ and for each $x \in X_{i,c}$, there is at least 1 set containing x selected. On the graph $G_{i,c}$, this translates into selecting a subset of the nodes v_A corresponding to the sets $A \in \mathcal{S}_{i,c}$ such that for each $x \in X_{i,c}$, the corresponding node u_x has at most $O(n/\log n)$ neighbors selected and if u_x has degree at least $n/2^i$, it has at least 1 neighbor selected. From Lemma 11, we further know that all nodes u_x in $G_{i,c}$ have degree at most $n/2^{i-1}$ and all nodes v_A have degree at most $n/2^{i-1}$. Selecting the subset of sets \mathcal{S}' therefore exactly corresponds to solving the problem given by Lemma 10 on graph $G_{i,c}$ with parameter $p = n/(\gamma 2^i \log n)$ for an appropriate constant $\gamma > 0$. Further note that because we are given a 2-hop $(d(n), c(n))$-decomposition, the parts of the graph $G_{i,c}$ corresponding to different clusters of color c are disjoint. We can therefore solve the problem of selecting nodes in $\mathcal{S}_{i,c}$ separately for each cluster of color c. Because each such cluster has a spanning tree of diameter $d(n)$, Lemma 10 implies that each step can be implemented in $\tilde{O}(d(n))$ rounds.

Lemma 13. Algorithm 1 computes a solution for a given set cover instance that is with an $O(\log^2 n)$-factor of an optimal solution.

Proof. The algorithm always computes a valid solution (i.e., a solution that covers all the elements): For $i = j = \lceil \log n \rceil$, condition (c) of Lemma 11 implies that $s(x,c,1) = 0$ for all $x \in X$ and all $c \in \{1, \ldots, c(n)\}$. This can only be true if all elements $x \in X$ are covered.

To prove the bound on the approximation ratio, we use a standard dual fitting argument (see e.g. [35, Chapter 13]). In the step that covers an element $x \in X$, we assign a dual variable $y_x > 0$ to x such that at the end of the algorithm $\sum_{x \in X} y_x = |C|$. Consider some step c of stage i and phase j and assume that the sets in \mathcal{S}' are added to the set cover C.

Let $X' \subseteq X$ be the set of elements that were uncovered before step c of stage i and phase j and which are covered by the sets in \mathcal{S}'. For all $x \in X'$, we set the dual variable y_x to $y_x := |\mathcal{S}'|/|X'|$. This clearly implies that at the end $\sum_{x \in X} y_x = |\mathcal{S}'|$ and thus at the end $\sum_{x \in X} y_x = |C|$. Note that for all sets $A \in \mathcal{S}'$, we have $\delta(A) \geq n/2^i$. Because for each uncovered element $x \in X$, there are at most $O(\log n)$ sets $A \in \mathcal{S}'$ for which $x \in A$, we have $|X| = \Omega(|\mathcal{S}'| \cdot n/(2^i \log n))$. Because by condition (a) of Lemma 11 for all $A \in \mathcal{S}'$, we have $\delta(A) \leq n/2^{i-1}$, for all $x \in X' \cap A$, we have $y_x = O(\log n)/\delta(A)$. At the end of the algorithm, we thus get that for every set $A \in \mathcal{S}$,

$$\sum_{x \in A} y_x = O(\log n) \cdot \sum_{\ell=1}^{|A|} \frac{1}{\ell} = O(\log^2 n).$$

Dividing all y_x-variables by $O(\log^2 n)$ gives a feasible solution to the dual LP of the standard set cover LP relaxation. By LP duality, the obtained set cover is within an $O(\log^2 n)$ factor of the optimal solution.

Theorem 14. A $O(\log^2 n)$-approximation for the distributed set cover problem can be computed deterministically in $2^{O(\sqrt{\log n \log \log n})}$ rounds in the CONGEST model.

Proof. We can compute a 2-hop $(2^{O(\sqrt{\log n \log \log n})}, 2^{O(\sqrt{\log n \log \log n})})$-decomposition deterministically in $2^{O(\sqrt{\log n \log \log n})}$ rounds in the CONGEST model, using Theorem 3. Having this, the theorem then directly follows from Lemmas 12 and 13.
References

A Distributed Network Decomposition Algorithm

We next describe how to adapt the network decomposition algorithm of Awerbuch, Goldberg, Luby, and Plotkin [3] to deterministically compute a k-hop strong diameter decomposition in the CONGEST model for $k > 1$. We start with a high-level overview of the algorithm and highlight the main obstacles we need to overcome.

Highlevel Overview of the Network Decomposition Construction: We first summarize the algorithm of [3] to compute a (1-hop) network decomposition with $c(n)$ colors for an n-node graph $G = (V, E)$. As a first step, the nodes V are partitioned into the heavy nodes V_H of degree at least $c(n)$ and the light nodes V_L of degree less than $c(n)$. The algorithm then computes a $(3, O(\log n))$-ruling set S of the graph $G_H := G[V_H]$ induced by the heavy nodes. By assigning each node $v \in V_H$ to a nearest node in S, the nodes in S define a clustering of G_H. Let G'_H be the graph resulting from contracting each cluster to a single node. Note that because all nodes in S have degree at least $c(n)$ and because two nodes in S are at distance at least 3 in G, the number of nodes of G'_H is at most $n/c(n)$. A network decomposition of G_H can now be computed by recursively computing a network decomposition of G'_H with $c(n)$ colors. Note that when doing so, simulating one communication round in G'_H can be done in $O(\log n)$ rounds in G_H (possibly at the cost of using larger messages). Further, if a cluster of the recursively computed decomposition of G'_H has diameter d in G'_H, it has diameter $O(d \log n)$ in G_H. The network decomposition of G_H can be extended to a network decomposition of G by making a single cluster out of every of the low-degree nodes in V_L and by coloring these nodes with at most $c(n)$ colors such that the final coloring of the clusters in G is valid. Such a coloring can be computed in $O(c(n))$ rounds. The construction has $O(\log_{c(n)} n)$ recursion levels and because the cluster diameter grows by a factor $O(\log n)$ on each recursion level, the cluster diameter $d(n)$ of the computed decomposition is $O(\log n)^{O(\log_{c(n)} n)}$. By choosing $c(n) = 2^{O(\sqrt{\log n \log \log n})}$, we obtain a $(2^{O(\sqrt{\log n \log \log n})}, 2^{O(\sqrt{\log n \log \log n})})$-decomposition of G. The time for computing the decomposition can be recursively stated as $T(n) \leq O(\log n) \cdot T(n/c(n)) + O(c(n))$ and with the above for $c(n)$, one gets $T(n) = 2^{O(\sqrt{\log n \log \log n})}$.

Main Challenges When Implementing the Algorithm with Small Messages: Let us now discuss the main obstacles when using the above algorithm to compute a strong diameter k-hop decomposition for some $k \geq 1$ in the CONGEST model. We first note that it is not even obvious how to obtain a k-hop strong diameter decomposition for $k > 1$ if nodes are allowed to send large messages. One could simply try to run the algorithm on the graph G^k, however while this guarantees that any two clusters of the same color are separated by at least $k + 1$ hops, it does not guarantee that the induced graph of each cluster has small diameter. Two neighbors in G^k might end up in the same cluster, however the path of length $\leq k$ connecting them might not be within the same cluster. We can resolve this problem by first computing clusters such that the clusters of different recursion levels of the above construction can overlap. From an application point of view, it usually does not matter if clusters of different colors overlap. We will see below that one can rebuild the clusters starting from the lowest recursion level (from the clusters with the largest diameter bound) and obtain a decomposition where all clusters are disjoint.

Implementing the above idea in the CONGEST model leads to an additional challenge: In the CONGEST model on G, it is not even possible for a node v of G to efficiently communicate with all the nodes in its 2-neighborhood or to even compute the size of its 2-neighborhood.
Assume that a subset of nodes of the graph are marked. Using an algorithm of [25] and given parameters \(q \geq 1 \) and \(k \geq 1 \), in time linear in \(q + k \), it is possible for a node \(v \) to receive messages from the \(q \) nearest marked nodes inside the \(k \)-neighborhood of \(v \). We will see that this suffices to implement the network decomposition algorithm for arbitrary \(k \geq 1 \).

A.1 Computing a k-Hop Decomposition in the CONGEST Model

We now describe how to recursively construct a \(k \)-hop strong diameter network decomposition of an \(n \)-node graph \(G = (V,E) \). Instead of directly computing the clusters of the decomposition in a recursive way, the algorithm first just constructs the centers of the clusters. Assume that we are given some parameter \(Q > 1 \) and we set \(t := \lceil \log_Q n \rceil \). We give an algorithm that constructs a sequence of radii \(\rho_1 < \rho_2 < \cdots < \rho_t \) and a sequence of centers \(S_1, S_2, \ldots, S_t \subseteq V \) with the following properties.

1. For all \(i \in \{1, \ldots, t-1\} \), \(\rho_i / \rho_{i+1} \leq 1/2 \).
2. The sets \(S_1, \ldots, S_t \) are pairwise disjoint.
3. We have \(\bigcup_{i=1}^t N_G,\rho_i (S_i) = V \).
4. For each \(i \in \{1, \ldots, t\} \) and every \(v \in S_i \), we have \(|N_G,\rho_{i+1}(v) \cap S_i| \leq Q \).

Note that if we build a cluster of radius \(\rho_i \) for each node \(v \in S_i \), property (III) implies that the clusters cover the whole graph. Further, property (IV) guarantees that if we use different color palettes for different \(i \), the clusters can be colored with \(O(Q \cdot t) \) colors such that clusters of the same color are separated by at least \(k + 1 \) hops. Properties (III) and (IV) therefore directly imply a \(k \)-hop strong diameter network decomposition with possibly overlapping clusters, where each cluster has radius at most \(\rho_i \) and where the clusters can be colored with \(O(Q \cdot t) \) colors. We will now first show how to compute the radii \(\rho_i \) and the sets of centers \(S_i \) such that properties (I)–(IV) are satisfied and we will then show how to obtain a network decomposition with disjoint clusters from properties (I)–(IV).

Similar to the algorithm of [3], the sets \(S_1, \ldots, S_t \) will be obtained by a sequence of ruling set computations. Formally, we require the following lemma, which first appears in [3].

Lemma 15. (Awerbuch et al. [3]) Let \(G = (V,E) \) be a graph, let \(V' \subseteq V \) and let \(\alpha \geq 2 \) be an integer parameter. There is constant \(\gamma > 0 \) for which there is a deterministic \(O(\alpha \log n) \)-time CONGEST algorithm that computes an \((\alpha, \gamma \alpha \log n) \)-ruling set \(S \subseteq V' \) of \(G \) w.r.t. \(V' \).

The claim of Lemma 15 first appears in [3]. As stated, the ruling set algorithm of [3] does not directly work in the CONGEST model. However, a simple adaptation of the algorithm does work in the CONGEST model (see, e.g., [19,22]). In the following, we assume that there is a subroutine RULINGSET\((G, \alpha, V')\) that outputs an \((\alpha, \gamma \alpha \log n) \)-ruling set of \(G \) w.r.t. \(V' \).

We can now define the radii \(\rho_1, \ldots, \rho_t \) and describe the construction of the sets \(S_i \). We define a parameter \(\eta := \max \{2, 9\gamma \log n\} \), where \(\gamma \) is the respective constant from Lemma 15. The radii \(\rho_i \) are chosen as

\[
\rho_1 := 0 \quad \text{and} \quad \rho_i := \sum_{j=1}^{i-1} \eta^j \cdot k \quad \text{for } i \in \{2, \ldots, t\}.
\]
Note that for \(i \geq 2 \), \(\rho_i \) can also be recursively defined as \(\rho_i = \eta(\rho_{i-1} + k) \). The computation of the sets \(S_1, \ldots, S_t \) is given by the following Algorithm \text{ComputeCenters}(k, Q).

<table>
<thead>
<tr>
<th>ComputeCenters((G, k, Q)):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Output:</td>
</tr>
<tr>
<td>1:</td>
</tr>
<tr>
<td>2:</td>
</tr>
<tr>
<td>3:</td>
</tr>
<tr>
<td>4:</td>
</tr>
<tr>
<td>5:</td>
</tr>
</tbody>
</table>

The next lemma shows that the construction of the radii \(\rho_i \) and the sets \(S_i \) indeed satisfies properties (I)-(IV).

Lemma 16. The Algorithm \text{ComputeCenters}(G, k, Q) computes radii \(\rho_1, \ldots, \rho_t \) and sets \(S_1, \ldots, S_t \) that satisfy properties (I)-(IV).

Proof. Property (I) holds by the definition of the radii \(\rho_i \) and because we assumed that \(\eta \geq 2 \). Property (II) is clearly satisfied because we have \(S_i \subseteq R_i \) and because \(R_{i+1} \) is computed as a subset of \(H_i = R_i \setminus S_i \). Property (IV) also directly holds by construction (cf. line 3 of Alg. \text{ComputeCenters}(G, k, Q)). To prove property (III), we first show by induction on \(i \) that

\[
NG,\rho_i(R_i) \cup \bigcup_{j=1}^{i-1} NG,\rho_j(S_j) = V
\]

(2)

holds for all \(i \in \{1, \ldots, t+1\} \). For \(i = 1 \) we have \(R_1 = V \) and \(\rho_1 = 0 \) and therefore Equation (2) clearly holds. To complete the induction step, we show that if Equation (2) holds a given \(i \), it also holds for \(i + 1 \). Together with line 4 of the algorithm Equation (2) clearly implies that \(N(G, \rho_i)(H_i) \cup \bigcup_{j=1}^{i} N(G, \rho_j)(S_j) = V \). It therefore suffices to show that

\[
NG,\rho_i(H_i) \subseteq NG,\rho_{i+1}(R_{i+1}).
\]

The set \(R_{i+1} \) is an \((8\rho_i + 2k + 3, (8\rho_i + 2k + 3)\gamma \log n)\)-ruling set of \(G \) w.r.t. \(H_i \). It is therefore guaranteed that every node in \(H_i \setminus R_{i+1} \) has some node of \(R_{i+1} \) within distance \((8\rho_i + 2k + 3)\gamma \log n\). Every node in \(N(G, \rho_i)(H_i) \) therefore has some node of \(R_{i+1} \) within distance at most

\[
(8\rho_i + 2k + 3)\gamma \log n + \rho_i \leq \eta(\rho_i + k) = \rho_{i+1}.
\]

Recall that \(\eta \) is defined as \(\eta = \max \{2, 9\gamma \log n\} \) and that \(k \geq 1 \). Equation (2) therefore holds for all \(t \in \{1, \ldots, t+1\} \). If we can show that \(R_{t+1} = \emptyset \), property (III) directly follows from Equation (2). In order to prove that \(R_{t+1} = \emptyset \), we prove that for all \(i \geq 1 \), \(|R_i|/|R_{i+1}| > Q \). To see this, note that because \(H_i \) is defined as \(R_i \setminus S_i \), for all nodes \(v \in H_i \), it holds that \(|NG,4\rho_i+k+1(v) \cap R_i| > Q \). Because \(R_{i+1} \) is a \((\alpha, \beta)\)-ruling set w.r.t. \(H_i \) for \(\alpha = 8\rho_i + 2k + 3 \), for every node in \(v \in R_{i+1} \), there are more than \(Q \) nodes in \(R_i \) that are closer to \(v \) than to any other node in \(R_{i+1} \) (including the node \(v \) itself). For every node in \(R_{i+1} \), we therefore remove more than \(Q - 1 \) nodes from \(R_i \) and we thus have \(|R_i|/|R_{i+1}| > Q \). We have \(R_3 = V \) and thus \(|R_1| = n \) and we therefore get \(|R_i| < n/Q^{t-1} \). As we chose \(t = \lceil \log_Q n \rceil \), this implies that \(|R_i| < Q \). This implies that in line 3 of the algorithm, we set \(S_t = R_t \) and thus \(R_{t+1} = H_t = \emptyset \). △
We will next show how to turn the computed set of centers into a valid strong diameter \(k \)-hop decomposition of \(G \). In particular, the lemma shows how to obtain disjoint low diameter clusters from the potentially overlapping clusters that are obtained by directly taking the \(\rho_i \)-neighborhoods of each node in \(S_i \) for each \(i \in \{1, \ldots, t\} \).

Lemma 17. Assume that we are given a graph \(G = (V, E) \), a parameter \(Q > 1 \), as well as radii \(\rho_1 < \cdots < \rho_t \) and node sets \(S_1, \ldots, S_t \) that satisfy properties (I)–(IV). Then, one can compute a strong diameter \(k \)-hop \((O(k \cdot \log^{t-1} n), O(t \cdot Q^2 \cdot \log n)) \)-decomposition in time \(O(Qt + k \cdot \log^t n) \) in the CONGEST model.

Proof. We first discuss how the network decomposition is constructed and we afterwards prove the bound on the round complexity of the construction. As a first step, iterate over the different “levels” \(i \in \{1, \ldots, t\} \). For each level \(i \), we define \(V_i := \mathcal{N}_{G, \rho_i}(S_i) \). We partition \(V \) into clusters of (strong) radius at most \(\rho_i \) by assigning each node in \(V_i \) to the (a) nearest node in \(S_i \). For each such cluster, we construct a rooted spanning tree of depth at most \(\rho_i \) such that the root of each spanning tree is the cluster center in \(S_i \). For a node \(v \in V_i \setminus S_i \), we define the level-\(i \)-parent of \(v \) as the parent in the spanning tree of \(v \)'s cluster. For each node \(v \in S_i \), we define \(v \) to be its own level-\(i \) parent. We further compute a coloring of the level-\(i \) clusters by assigning a color to each node in \(S_i \) (i.e., to each cluster center). We make sure that two nodes in \(S_i \) get different colors whenever they are within distance at most \(4\rho_i + k + 1 \). By Property (IV), for each node \(v \in S_i \), we have \(\left| \mathcal{N}_{G, 4\rho_i + k + 1}(v) \cap S_i \right| \leq Q \).

By using a 1-round coloring algorithm of Linial [28], if each node \(v \in S_i \) knows the IDs of all nodes in \(\mathcal{N}_{G, 4\rho_i + k + 1}(v) \cap S_i \), one can compute such a coloring with \(O(Q^2 \log n) \) colors without further communication. We use different sets of \(O(Q^2 \log n) \) colors for the different levels \(i \in \{1, \ldots, t\} \) and we therefore obtain \(O(t \cdot Q^2 \log n) \) colors in total.

We now describe how to obtain disjoint clusters. For every node \(v \in V_i \), we define \(i_v \) to be the largest level \(i \) for which \(v \in V_i \) and thus \(v \) has an \(i \)-parent. We define the \(i_v \)-parent of \(v \) as the main parent of \(v \). The clustering is now defined by the spanning trees that are obtained by the main parents of all nodes. To bound the maximum radius of a resulting cluster, observe that for each node, when following the main parent pointers, one can only pass through one cluster on each level \(i \). Consider a cluster, where the root is in \(S_i \). The maximum radius of such a cluster is at most \(\rho_1 + \rho_2 + \ldots + \rho_i \leq 2\rho_i \), where the inequality follows from property (I). Hence, because on a given level \(i \), cluster centers that are within distance \(4\rho_i + k + 1 \) get different colors, it is guaranteed that clusters of the same color are \(k \)-separated. We thus obtain a valid strong diameter network decomposition where the maximum cluster radius is \(O(\rho_i) = O(k \cdot \log^{t-1} n) \) and where the clusters are colored with \(O(t \cdot Q^2 \log n) \) colors.

In order to bound the running time, we first investigate the individual steps of the Algorithm ComputeCenters\((G, k, Q)\). Consider an iteration of the for-loop for a specific value of \(i \). By using the source detection algorithm of Lenzen and Peleg [25], \(v \) can determine the \(Q \) closest nodes in \(\mathcal{N}_{G, 4\rho_i + k + 1}(v) \cap R_i \) in time \(O(Q + \rho_i + k) \). Line 3 can therefore be executed in time \(O(Q + \rho_i + k) \). By Lemma 15, the ruling set \(R_{i+1} \) in line 5 can be computed in time \(O((\rho_i + k) \log n) \). Because the radii grow geometrically, the overall running time of Alg. ComputeCenters is therefore \(O(Qt + \rho_i \log n + tk \log n) = O(Qt + k \log^t n + tk \log n) = O(Qt + k \log^t n) \).

Given the sets \(S_1, \ldots, S_t \) that satisfy properties (I)–(IV), we obtain the final decomposition by computing the spanning trees of the clusters of all levels, by coloring the clusters of all levels, and by computing the combined clusters. The time to compute the spanning
trees and the combined clusters is linear in ρ_t and the time to compute the coloring of all clusters is linear in $O(tQ + \rho_t)$ by using the source detection algorithm of [25]. The overall running time to compute the decomposition is therefore still $O(Qt + k \log^t n)$.

Proof of Theorem 3. The theorem follows from Lemma 17 by choosing $Q = 2^{O(\sqrt{\log n \log \log n})}$ and consequently $t = O(\sqrt{\log n / \log \log n})$.

Next, we prove Corollary 4, which shows that from a 2-hop network decomposition, we directly get a sparse k-neighborhood cover.

Proof of Corollary 4. For each cluster C of the given network decomposition, we obtain a larger cluster C' by including C and all nodes of G that are within distance k of some node in C. The new clustering clearly covers each k-neighborhood of G. If two clusters of C_1 and C_2 of the network decomposition have the same color, they are 2-hop-separated and therefore the resulting clusters of the neighborhood cover are disjoint. For each of the C colors, every node is therefore in at most one of the clusters of the computed neighborhood cover the the cover is thus C-sparse. For each of the C colors, the new clusters can be computed in parallel in $O(d + k)$ rounds in the CONGEST model on G. ▷