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Abstract

This report contains the proof of correctness, soundness and optimality
for EVMDD-A" presented in the paper Symbolic Planning with Edge-
Valued Multi-Valued Decision Diagrams (Speck, Geiler, and Mattmiiller
2018).

1 Transition Relation

Lemma 1. Let (s,t') be an arbitrary state over V UV'. For any action a it
holds that (s,t') € Ty, iff a is applicable in s and t = s[a].

Proof. Let T be the intermediate EVMDD of Terms (3) to (5). By construction
of T!: a state (s,t") € T, iff a is applicable in s and ¢ = s[a]. Furthermore, it
holds that (s,t') € &, for all (s,t') € VUV (Def. 1). Thus, (s,t') € T, iff
(s,t') € (Tu"XE.,) iff (s,t') € T, iff a is applicable in s and ¢t = s|a). O

Lemma 2. Let (s,t') € T,. Then Ty(s,t') = ca(s).

Proof. The intermediate EVMDD T, of Terms (3) to (5) contains only states
with 0 or infinite cost (Def. 4 & Def. 5). Since (s,t') € T,, it holds that
T!(s,t') = 0. Then, T,(s,t") = (T."YE:,)(s,t') = max(T,(s,t'),ca(s,t)) =
max (0, co(s,t)) = ca(s,t') = cq(s). O

2 Image

Note that we sometimes use “min” instead of "V". This simplifies the notations.

If “min” is used for partial functions, we mean "V".

Theorem 1. Let t be an arbitrary state over V. Then t € image(E,T,) iff there
exists a state s € € such that a is applicable in s and t = s[a).



Proof.

t € image(€,T,)
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From Theorem 1, Lemma 1 and Lemma 2 follows Corollary 1 which will be

used to prove Theorem 2.
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Corollary 1. Let t be an arbitrary state over V with t € image(E,T,). Then

there exists a state s € € such that (s,t') € T,.

Proof. By definition ¢ € image(&,T,). Thus, by Theorem 1 there is a state s € £
such that a is applicable in s and ¢ = s[a]. It follows that there exists a state

s € € such that (s,t’

Theorem 2. Let £ = image(&,T,).
states t € £.

Proof.

E(t) =

) € T, (Lemma 1).
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3 Preimage

Theorem 3. Let s be an arbitrary state over V. Then s € preimage(&Ta) iff
there exists a state t € € such that a is applicable in s and t = s|a).

Proof.
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From Theorem 3, Lemma 1 and Lemma 2 follows Corollary 2 which will be
used to prove Theorem 4.

Corollary 2. Let s be an arbitrary state over V with s € preimage(fj, T.). Then
there exists a state t € € such that (s,t') € Ty,.

Proof. By definition s € preimage(c‘f ,To). Thus, by Theorem 3 there is a state
t € & such that a is applicable in s and t = s[a]. It follows that there exists a
state t € £ such that (s,t') € T, (Lemma 1). O

Theorem 4. Let £ = preimage(fj, T.). For any state s € £ it holds that E(s) =

E(sla]) + cals).



Proof.

E(s) = (preimage(€,T,))(s)
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= mtin(f:'(t) + T,(s,t")) (Transformation)
= min(&(s[a]) + ca(s)) (Cor. 2 + Lem. 2 + Thm. 3)

= E(s[a]) + ca(s) (Definition 1)

4 EVMDD-A~

Lemma 3. Let II be a planning task and h be a consistent heuristic. EVMDD-
A* expands states in the same order and with the same g-values as A* with
FIFO tie-breaking rule.

Proof. Let Sy be all states with minimum f-value of an open list Open. Re-
call that in A* the tie-breaking between different states with minimum f-value
in Open can be arbitrary. Let’s assume the tie-breaking rule is “first in first
out (FIFO)”. The difference between EVMDD-A* and A* is that EVMDD-A*
expands all states of Sy at once while A* iteratively (|S¢| iterations) extracts
these states. It is not possible that any other state is expanded before the |Sy|
iterations are finished, because h is consistent and therefore all newly generated
successors have at least the f-value of all states in Sy.

e Goal check. Any ordering of expanding states in Sy is possible in A*.
Thus, it is equivalent to first check if any state in Sy is a goal state.

e Closed list. Any ordering of expanding states in Sy is possible in A*.
Thus, it is equivalent to first add all states Sy to the closed list and then
expand all states Sy.

e Open list. By Theorem 1, in EVMDD-A*, all successors of Sy are gener-
ated and added to the open list if they are not contained in the closed list.



This is equivalent to adding them iteratively to Open. By Theorem 2 the
cost of a successor § is the minimum cost with which § is reachable from
any state in Sy applying action a. In line 9 (Algorithm 1), the minimum
cost is taken from the current cost of § in Open or the minimum cost with
which 3 is reachable from Sy applying any actions a € A. Thus, the cost
of a state § in Open is only updated iff it is reachable with lower cost
from any expanded state in Sy. Again, this is equivalent to A* after [Sy|
iterations.

Therefore, EVMDD-A* and A* expand nodes in the same order and with the
same g-values. O

Lemma 4. Let II be a planning task and h be a consistent heuristic. EVMDD-
A* returns “no plan” iff A* returns “no plan”.

Proof. In EVMDD-A*, “no plan” is returned iff the open list is empty. By
Lemma 3, the open list in EVMDD-A* is found empty iff the open list in A* is
found empty. O

Lemma 5. Let II be a planning task and h be a consistent heuristic. If a plan
exists for I, EVMDD-A* returns the same plan as A* with FIFO tie-breaking
rule.

Proof. EVMDD-A* expands states in the same order and with the same g-
values as A* (Lemma 3). Heuristic h is consistent, therefore all states in the
closed list have minimum g-values g*, i.e. the minimum cost with which they
can be reached from sg. ConstPlan is a version of backward greedy search with
perfect heuristic h* = g* where the g*-values are stored in the closed list. Thus,
ConstPlan and therefore EVMDD-A” returns an optimal plan from sy to any
goal state expanded in EVMDD-A*. EVMDD-A* expands the same goal state
as A* (Lemma 3). Thus, EVMDD-A* returns a plan iff A* returns a plan and
EVMDD-A™ returns the same plan as A* (if a plan exists). O

Theorem 5 & 6. EVMDD-A* is complete, sound and optimal for consistent
heuristics.

Proof. Let II be a planning task and h be a consistent heuristic. EVMDD-A*
returns “no plan” iff A* returns “no plan” (Lemma 4). If a plan exists for II,
EVMDD-A™ returns the same plan as A* (Lemma 5). EVMDD-A* is complete,
sound and optimal for consistent heuristics because A* is it too. O
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