
Symbolic Planning with Edge-Valued

Multi-Valued Decision Diagrams - Detailed Proofs

David Speck and Florian Geißer and Robert Mattmüller
University of Freiburg, Germany

{speckd, geisserf, mattmuel}@informatik.uni-freiburg.de

Abstract

This report contains the proof of correctness, soundness and optimality
for EVMDD-A? presented in the paper Symbolic Planning with Edge-
Valued Multi-Valued Decision Diagrams (Speck, Geißer, and Mattmüller
2018).

1 Transition Relation

Lemma 1. Let (s, t′) be an arbitrary state over V ∪ V ′. For any action a it
holds that (s, t′) ∈ Ta iff a is applicable in s and t = s[a].

Proof. Let T ′a be the intermediate EVMDD of Terms (3) to (5). By construction
of T ′a: a state (s, t′) ∈ T ′a iff a is applicable in s and t = s[a]. Furthermore, it
holds that (s, t′) ∈ Eca for all (s, t′) ∈ V ∪ V ′ (Def. 1). Thus, (s, t′) ∈ Ta iff
(s, t′) ∈ (T ′a

max
∧ Eca) iff (s, t′) ∈ T ′a iff a is applicable in s and t = s[a].

Lemma 2. Let (s, t′) ∈ Ta. Then Ta(s, t′) = ca(s).

Proof. The intermediate EVMDD T ′a of Terms (3) to (5) contains only states
with 0 or infinite cost (Def. 4 & Def. 5). Since (s, t′) ∈ Ta, it holds that
T ′a(s, t′) = 0. Then, Ta(s, t′) = (T ′a

max
∧ Eca)(s, t′) = max(T ′a(s, t′), ca(s, t′)) =

max(0, ca(s, t′)) = ca(s, t′) = ca(s).

2 Image

Note that we sometimes use “min” instead of min
∨ . This simplifies the notations.

If “min” is used for partial functions, we mean min
∨ .

Theorem 1. Let t be an arbitrary state over V. Then t ∈ image(E , Ta) iff there
exists a state s ∈ E such that a is applicable in s and t = s[a].

1

Proof.

t ∈ image(E , Ta)

⇔ t ∈ (∃LCV (E + Ta))[V ′ ↔ V] (Definition 7)

⇔ t′ ∈ ∃LCV (E + Ta) (Substitution Lemma)

⇔ t′ ∈ ∃LCv1,...,vn(E + Ta) (Definition ∃LC)

⇔ ∃s : (s, t′) ∈ (E + Ta) (Transformation)

⇔ ∃s : (s, t′) ∈ E and (s, t′) ∈ Ta (Definition 4)

⇔ ∃s : s ∈ E and (s, t′) ∈ Ta (Transformation)

⇔ ∃s : s ∈ E and a is applicable in s and t = s[a] (Lemma 1)

⇔ there exists a state s ∈ E s.t. a is applicable in s (Transformation)

and t = s[a]

From Theorem 1, Lemma 1 and Lemma 2 follows Corollary 1 which will be
used to prove Theorem 2.

Corollary 1. Let t be an arbitrary state over V with t ∈ image(E , Ta). Then
there exists a state s ∈ E such that (s, t′) ∈ Ta.

Proof. By definition t ∈ image(E , Ta). Thus, by Theorem 1 there is a state s ∈ E
such that a is applicable in s and t = s[a]. It follows that there exists a state
s ∈ E such that (s, t′) ∈ Ta (Lemma 1).

Theorem 2. Let Ê = image(E , Ta). Then Ê(t) = mins(E(s) + ca(s)) for all
states t ∈ Ê.

Proof.

Ê(t) = (image(E , Ta))(t)

= ((∃LCV (E + Ta))[V ′ ↔ V])(t) (Definition 7)

= (∃LCV (E + Ta))(t′) (Substitution Lemma)

= (∃LCv1,...,vn(E + Ta))(t′) (Definition ∃LC)

= (min
v1,...,vn

(E + Ta))(t′) (Definition ∃LC)

= (min
s

(E + Ta))(t′) (Transformation)

= (min
s

(E(s, ∗) + Ta(s, ∗)))(t′) (Transformation)

= min
s

(E(s, t′) + Ta(s, t′)) (Transformation)

= min
s

(E(s) + Ta(s, t′)) (Transformation)

= min
s

(E(s) + ca(s)) (Corollary 1 + Lemma 2)

2

3 Preimage

Theorem 3. Let s be an arbitrary state over V. Then s ∈ preimage(Ê , Ta) iff
there exists a state t ∈ Ê such that a is applicable in s and t = s[a].

Proof.

s ∈ preimage(Ê , Ta)

⇔ s ∈ ∃LCV′ (Ê [V ↔ V ′] + Ta) (Definition 7)

⇔ s ∈ ∃LCv′
1,...,v

′
n
(Ê [V ↔ V ′] + Ta) (Definition ∃LC)

⇔ ∃t : (s, t′) ∈ (Ê [V ↔ V ′] + Ta) (Transformation)

⇔ ∃t : (s, t′) ∈ Ê [V ↔ V ′] and (s, t′) ∈ Ta (Transformation)

⇔ ∃t : (t, s′) ∈ Ê and (s, t′) ∈ Ta (Substitution Lemma)

⇔ ∃t : t ∈ Ê and (s, t′) ∈ Ta (Transformation)

⇔ ∃t : t ∈ Ê and a is applicable in s and t = s[a] (Lemma 1)

⇔ there exists a state t ∈ Ê s.t. a is applicable in s (Transformation)

and t = s[a]

From Theorem 3, Lemma 1 and Lemma 2 follows Corollary 2 which will be
used to prove Theorem 4.

Corollary 2. Let s be an arbitrary state over V with s ∈ preimage(Ê , Ta). Then
there exists a state t ∈ Ê such that (s, t′) ∈ Ta.

Proof. By definition s ∈ preimage(Ê , Ta). Thus, by Theorem 3 there is a state
t ∈ Ê such that a is applicable in s and t = s[a]. It follows that there exists a
state t ∈ Ê such that (s, t′) ∈ Ta (Lemma 1).

Theorem 4. Let E = preimage(Ê , Ta). For any state s ∈ E it holds that E(s) =
Ê(s[a]) + ca(s).

3

Proof.

E(s) = (preimage(Ê , Ta))(s)

= (∃LCV′ (Ê [V ↔ V ′] + Ta))(s) (Definition 7)

= (∃LCv′
1,...,v

′
n
(Ê [V ↔ V ′] + Ta))(s) (Definition ∃LC)

= (min
v′
1,...,v

′
n

(Ê [V ↔ V ′] + Ta))(s) (Definition ∃LC)

= (min
t′

(Ê [V ↔ V ′] + Ta))(s) (Transformation)

= (min
t

(Ê [V ↔ V ′](∗, t′) + Ta(∗, t′)))(s) (Transformation)

= min
t

(Ê [V ↔ V ′](s, t′) + Ta(s, t′)) (Transformation)

= min
t

(Ê(t, s′) + Ta(s, t′)) (Substitution Lemma)

= min
t

(Ê(t) + Ta(s, t′)) (Transformation)

= min
s[a]

(Ê(s[a]) + ca(s)) (Cor. 2 + Lem. 2 + Thm. 3)

= Ê(s[a]) + ca(s) (Definition 1)

4 EVMDD-A?

Lemma 3. Let Π be a planning task and h be a consistent heuristic. EVMDD-
A? expands states in the same order and with the same g-values as A? with
FIFO tie-breaking rule.

Proof. Let Sf be all states with minimum f -value of an open list Open. Re-
call that in A? the tie-breaking between different states with minimum f -value
in Open can be arbitrary. Let’s assume the tie-breaking rule is “first in first
out (FIFO)”. The difference between EVMDD-A? and A? is that EVMDD-A?

expands all states of Sf at once while A? iteratively (|Sf | iterations) extracts
these states. It is not possible that any other state is expanded before the |Sf |
iterations are finished, because h is consistent and therefore all newly generated
successors have at least the f -value of all states in Sf .

• Goal check. Any ordering of expanding states in Sf is possible in A?.
Thus, it is equivalent to first check if any state in Sf is a goal state.

• Closed list. Any ordering of expanding states in Sf is possible in A?.
Thus, it is equivalent to first add all states Sf to the closed list and then
expand all states Sf .

• Open list. By Theorem 1, in EVMDD-A?, all successors of Sf are gener-
ated and added to the open list if they are not contained in the closed list.

4

This is equivalent to adding them iteratively to Open. By Theorem 2 the
cost of a successor ŝ is the minimum cost with which ŝ is reachable from
any state in Sf applying action a. In line 9 (Algorithm 1), the minimum
cost is taken from the current cost of ŝ in Open or the minimum cost with
which ŝ is reachable from Sf applying any actions a ∈ A. Thus, the cost
of a state ŝ in Open is only updated iff it is reachable with lower cost
from any expanded state in Sf . Again, this is equivalent to A? after |Sf |
iterations.

Therefore, EVMDD-A? and A? expand nodes in the same order and with the
same g-values.

Lemma 4. Let Π be a planning task and h be a consistent heuristic. EVMDD-
A? returns “no plan” iff A? returns “no plan”.

Proof. In EVMDD-A?, “no plan” is returned iff the open list is empty. By
Lemma 3, the open list in EVMDD-A? is found empty iff the open list in A? is
found empty.

Lemma 5. Let Π be a planning task and h be a consistent heuristic. If a plan
exists for Π, EVMDD-A? returns the same plan as A? with FIFO tie-breaking
rule.

Proof. EVMDD-A? expands states in the same order and with the same g-
values as A? (Lemma 3). Heuristic h is consistent, therefore all states in the
closed list have minimum g-values g∗, i.e. the minimum cost with which they
can be reached from s0. ConstPlan is a version of backward greedy search with
perfect heuristic h∗ = g∗ where the g∗-values are stored in the closed list. Thus,
ConstPlan and therefore EVMDD-A? returns an optimal plan from s0 to any
goal state expanded in EVMDD-A?. EVMDD-A? expands the same goal state
as A? (Lemma 3). Thus, EVMDD-A? returns a plan iff A? returns a plan and
EVMDD-A? returns the same plan as A? (if a plan exists).

Theorem 5 & 6. EVMDD-A? is complete, sound and optimal for consistent
heuristics.

Proof. Let Π be a planning task and h be a consistent heuristic. EVMDD-A?

returns “no plan” iff A? returns “no plan” (Lemma 4). If a plan exists for Π,
EVMDD-A? returns the same plan as A? (Lemma 5). EVMDD-A? is complete,
sound and optimal for consistent heuristics because A? is it too.

References

Speck, D.; Geißer, F.; and Mattmüller, R. 2018. Symbolic Planning with Edge-
Valued Multi-Valued Decision Diagrams. In Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS). Accepted.

5

