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Abstract18

This paper investigates the message complexity of distributed information spreading (a.k.a gossip19

or token dissemination) in adversarial dynamic networks. While distributed computations in20

dynamic networks have been studied intensively over the last years, almost all of the existing21

work solely focuses on the time complexity of distributed algorithms.22

In information spreading, the goal is to spread k tokens of information to every node on23

an n-node network. We consider the amortized (average) message complexity of spreading a24

token, assuming that the number of tokens is large. In a static network, this basic problem25

can be solved using (asymptotically optimal) O(n) amortized messages per token. Our focus is26

on token-forwarding algorithms, which do not manipulate tokens in any way other than storing,27

copying, and forwarding them.28

We consider two types of adversaries that have been studied extensively in dynamic networks:29

adaptive and oblivious. The adaptive worst-case adversary provides a dynamic sequence of net-30

work graphs under the assumption that it is aware of the status of all nodes and the algorithm31

(including the current random choices) and can rewire the network arbitrarily in every round32

with the constraint that it always keeps the n-node network connected. On the other hand, the33

oblivious adversary is a worst-case adversary that is oblivious to the random choices made by the34

algorithm. The message complexity of information spreading is not yet fully understood in these35

models. In particular, the central question that motivates our work is whether one can achieve36

subquadratic amortized message complexity for information spreading.37

We present two sets of results depending on how nodes send messages to their neighbors:38

1. Local broadcast: We show a tight lower bound of Ω(n2) on the number of amortized local39

broadcasts, which is matched by the naive flooding algorithm.40

2. Unicast: We study the message complexity as a function of the number of dynamic changes in41

the network. To facilitate this, we introduce a natural complexity measure for analyzing dynamic42

networks called adversary-competitive message complexity where the adversary pays a unit cost43

for every topological change. Under this model, it is shown that if k is sufficiently large, we44

can obtain an optimal amortized message complexity of O(n). We also present a randomized45

algorithm that achieves subquadratic amortized message complexity when the number of tokens46
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is not large under an oblivious adversary. Our analysis of the unicast communication under the47

adversary-competitive model (which may be of independent interest) is a main contribution of48

this paper.49

Our work is a step towards fully understanding the message complexity of information spread-50

ing in dynamic networks.51
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1 Introduction62

Many modern distributed communication networks such as ad hoc wireless, sensor, and mobile63

networks, overlay and peer-to-peer (P2P) networks are inherently dynamic (suffer from a high64

rate of connections and disconnections) and bandwidth-constrained. Hence, understanding65

the possibilities and limitations of distributed computation in dynamic networks has been a66

major goal in recent years.67

In this paper, we study the fundamental problem of information spreading on (synchronous)68

dynamic networks. This problem was analyzed for static networks by Topkis [39], and was69

in particular studied on dynamic networks by Kuhn, Lynch, and Oshman [32]. In the70

information spreading problem (also called k-gossip or k-token dissemination), there are k71

pieces of information (tokens) that are initially present in some nodes and the problem is to72

disseminate the k tokens to all the n nodes in the network, under the bandwidth constraint73

that one token can go through an edge per round. This problem is a fundamental primitive74

for distributed computing; indeed, solving n-gossip, where each node starts with exactly one75

token, allows any function of the initial states of the nodes to be computed, assuming the76

nodes know n [32].77

The dynamic network models that we consider in this paper allow a worst-case adversary78

known as strongly adaptive that can choose any communication links among the nodes79

for each round, with the only constraint being that the resulting communication graph be80

connected in each round; this adversary can choose the links with the knowledge of the81

tokens that any node can send in that round as well as its random choices (in one of the82

results we also consider an oblivious adversarial model). Our adversarial models are closely83

related to those adopted in recent studies (e.g., see [8, 16, 22, 26, 32, 37]). We distinguish two84

variants of the basic model, depending on whether nodes communicate by local broadcast85

(i.e., a node always sends the same message to all its neighbors) or whether we allow nodes86

to do unicast communication (i.e., nodes can possibly send different messages to different87

neighbors in the same round). For more information on the model, we refer to Section 1.3.88

We note that most of the prior work (e.g., [26, 32, 37]) only considered communication by89

http://dx.doi.org/10.4230/LIPIcs...
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local broadcast.90

The focus of the present paper is on token-forwarding algorithms, which do not manipulate91

tokens in any way other than storing, copying, and forwarding them. Token-forwarding92

algorithms are simple and easy to implement and have been widely studied (e.g, see [35, 38]).93

The paper investigates the message complexity of token-forwarding algorithms for information94

spreading. Message complexity—the total number of messages sent by all nodes during95

the course of an algorithm—is an important performance measure. It directly relates to96

the cost of communication, which is a dominant cost in many real-world settings (e.g., it97

is correlated to energy, power, etc. in wireless networks). While information spreading in98

dynamic networks have been studied intensively over the last years, almost all of the existing99

work (e.g., [5, 8, 22,26,30,32]) solely focuses on the time (round) complexity of distributed100

algorithms. (However, some works that focus on time complexity imply bounds on messages101

— see e.g., [14,18,21].) In many cases, the currently best algorithms for information spreading102

in adversarial dynamic networks have a high message complexity and in many cases, a high103

time complexity as well. In contrast, in this paper, we are interested in the amortized message104

complexity of information spreading, i.e., the average message cost of spreading k tokens105

(when k is large) in a dynamic network. To the best of our knowledge, this aspect has not106

been studied in prior works on information spreading in dynamic networks (cf. Section 1.2).107

In any n-node static network, a simple token-forwarding algorithm that pipelines token108

transmissions up a rooted spanning tree, and then broadcasts them down the tree completes109

k-gossip in O(n+k) rounds [38], which is clearly asymptotically tight because the diameter of110

the network might be Θ(n) and because every node has to receive k different tokens. In fact,111

O(n+ k) rounds are even sufficient if in each round, each node forwards an arbitrary not yet112

forwarded token to each of its neighbors [39]. In a dynamic network, it is known that under113

a strongly adaptive adversary and if the communication is via local broadcast, the O(n+ k)114

bound cannot be achieved; Dutta et al. [26] (see also [30]) showed that Ω(nk/ log(nk) + n)115

rounds are necessary. This bound is essentially tight (up to a logarithmic factor), since one116

can easily achieve an upper bound of O(nk) by flooding. We do not know any tight bounds117

on the time complexity for unicast communication.118

With regard to messages, we are interested in the amortized (average) message complexity119

of spreading a token. In a static network, one can first build a spanning tree (which can take120

as much as Ω(n2) messages1 in graphs with Θ(n2) edges [34]), and then using the spanning121

tree edges to disseminate the tokens to all nodes; this takes O(n2 + nk) messages overall or122

O(n2/k+n) amortized messages per token. If k is sufficiently large2, say at least n, then the123

above bound gives O(n) amortized messages per token, which is optimal (since each node124

has to receive the token). On the other hand, for dynamic networks, the situation is far less125

clear. In the case of local broadcast communication (where each broadcast is counted as one126

message3), an O(n2) amortized message upper bound per token is straightforward to obtain127

1 This bound is true in the KT0 model where nodes do not have initial knowledge of their neighbors’
IDs. On the other hand, in the KT1 model, where each node has initial knowledge of the IDs of their
respective neighbors, it is possible to build a spanning tree in O(n polylog(n)) messages [31]. Note that
this distinction is not very important in the amortized setting in a static network, since in both cases
the amortized message complexity is O(n) if k = Ω(n). In the dynamic setting, we essentially assume
the KT1 model for unicast communication, whereas for broadcast communication, the distinction is not
important, see Section 1.3 for more details.

2 There are natural applications where k is large, e.g., if all nodes have tokens to broadcast or if some
node has a stream of messages as, for example, in audio/video transmissions.

3 This is reasonable, especially, in the context of wireless networks where nodes communicate by local
broadcast.
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by using flooding (each node broadcasts each token for n rounds). For unicast communication128

(cf. Section 1.3), again an O(n2) amortized upper bound is easy to obtain (each node sends129

each token at most once to each other node; note that for unicast communication each130

message to a neighbor is counted as one message). In both cases, non-trivial lower bounds131

are not known. Thus, the central question that we seek to address in this work is whether132

one can achieve o(n2) or even asymptotically optimal O(n) amortized message complexity133

when k is large (for both the local broadcast and the unicast settings). We note that prior134

works (including [5, 8, 22,26,30,32]) do not address this question.135

1.1 Our Main Results136

In the local broadcast setting, we give a negative answer to the above question and show that137

with a strongly adaptive adversary, the Θ(n2) amortized message complexity bound of the138

naive algorithm is indeed necessary (cf. Section 2). This “bad” bound for local broadcast is a139

motivation for considering the (more challenging) unicast setting. For the unicast setting, we140

study how the message complexity behaves as a function of the number of dynamic changes141

in the network. To facilitate this, we introduce a new and natural complexity measure for142

analyzing dynamic networks called adversary-competitive message complexity (cf. Definition143

3). While the adversary is free to change the topology arbitrarily from round to round, this144

measure allows one to intuitively assume that it has to pay some price for every connection and145

reconnection and we allow an algorithm a “free” communication budget of comparable size.146

This measure has natural real-world motivation. For example, in real-world communication147

networks, due to the actions of the lower layer link protocol (that is responsible to establish148

the connection when a physical link comes up), one can assume that whenever a new edge is149

created, some information is exchanged anyhow by the link layer. Thus, it is reasonable to150

assume that there is some cost to be paid in establishing or re-establishing a link (say, after151

the link is down for a while). Our new measure formalizes this intuition.152

Under the new complexity measure (defined formally in Section 1.3), we show that if k is153

sufficiently large, we obtain an optimal amortized message complexity of O(n) (cf. Section 3).154

In case the dynamic network topology satisfies some natural additional properties, we also155

show that the algorithm terminates in O(nk) rounds. We present two algorithms in this156

setting depending on how the tokens are initially distributed: (1) a single-source case, where157

all the tokens start at the same node and (2) a multi-source case, where the initial token158

distribution is arbitrary.159

When the number of tokens is not very large, say k = n (i.e., n-gossip), the O(n) amortized160

bound does not hold. In this setting, we are able to show a subquadratic amortized message161

complexity under an oblivious adversary, which is same as the worst-case adversary, except162

that it is oblivious to the random choices made by the algorithm and the execution history163

(cf. Section 3.2.2). Our algorithm is randomized and is based on random walks.164

Our analysis of the unicast communication under the adversary-competitive model is a165

main contribution of this paper. We believe that the adversary-competitive model can be an166

useful alternative to the current models in analyzing various other important problems such167

as leader election and agreement in dynamic networks (see e.g., [6, 7]).168

Our work raises several key open questions that are discussed in Section 4.169

1.2 Related Work and Comparison170

Information spreading (or dissemination) in networks is a fundamental problem in distributed171

computing with a rich literature. The problem is generally well-understood on static networks,172
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both for interconnection networks [35] as well as general networks [4,36,38]. In particular,173

the k-gossip problem can be solved in O(n+ k) rounds on any n-node static network [39].174

There are also several papers on broadcasting, multicasting, and related problems in static175

heterogeneous and wireless networks (e.g., see [3, 12,13,17]).176

Dynamic networks have been studied extensively over the past three decades. Early177

studies focused on dynamics that arise when edges or nodes fail (but, generally don’t consider178

edges/nodes recovering from failures). A number of fault models, varying according to extent179

and nature (e.g., probabilistic vs. worst-case) of faults and the resulting dynamic networks180

have been analyzed (e.g., see [4, 36]). There are several studies that constrain the rate at181

which changes occur or assume that the network eventually stabilizes (e.g., see [1, 25,27]).182

To address highly unpredictable network dynamics, models with stronger adversaries183

have been studied by [8,32,37] and others; see the recent survey of [16] and the references184

therein. Unlike prior models on dynamic networks, these models and ours do not assume185

that the network eventually stops changing; the algorithms are required to work correctly186

and terminate even in networks that change continually over time.187

The model of [26,30,32] allows for a much stronger adversary than the ones considered188

in past work [9–11]. In particular, the work of [26] (also see [30]), showed that every token189

forwarding information spreading algorithm that uses local broadcast for communication190

under a strongly adaptive adversary (the same as considered in this paper — cf. Section191

2) requires Ω(n2/ logn) rounds to complete. The survey of [33] summarizes recent work on192

dynamic networks (see also the early works of [19,20]).193

Recent work of [28, 29] presents information spreading algorithms based on network194

coding [2]. As mentioned earlier, one of their important results is that the k-gossip problem195

on the adversarial model of [32] can be solved using network coding in O(n + k) rounds196

assuming the token sizes are sufficiently large (Ω(n logn) bits).197

It is important to note that all the above results deal with the time complexity of198

information spreading in dynamic networks (i.e., the number or rounds needed) and not with199

the message complexity. The focus here is on amortized message complexity for spreading200

k tokens. We note that there is an important difference between the two measures. In201

particular, algorithms with efficient time complexity need not necessarily be message-efficient202

and vice-versa and hence prior time complexity-based results do not directly imply the203

results of this paper. Indeed, one can exchange up to Θ(n2) messages (in a graph with204

Θ(n2) edges) in just one round, and since one needs at least Ω(n) rounds for information205

spreading (in the worst-case), the total message complexity can be as high as Ω(n3) (for206

unicast). In other words, a message-efficient algorithm can take a longer time but exchanging207

less total number of messages, e.g., by sending messages only along a few edges and/or by208

using silence. However, as we show in Section 2, the amortized message complexity lower209

bound (even) for local broadcast (where a node’s local broadcast to all its neighbors is210

counted as just one message) is close to the worst possible, i.e., Ω(n2/ logn). The proof211

for this lower bound is inspired by the time complexity lower bound of [26], although the212

two proofs differ in their details. The “bad” lower bound for local broadcast motivates213

considering unicast communication which is the main focus of this paper. It is important214

to point out another difference between amortized time complexity and amortized message215

complexity. While amortized time complexity can be as low as Ω(D) (where D is the network216

diameter, which can be much smaller than n), the amortized message complexity is at217

least (trivially) Ω(n), since a token has to reach all the n nodes. There has not been much218

progress on improving time complexity (total or amortized) in dynamic networks (both for219

unicast and local broadcast) in the oblivious adversary model in general networks, although220
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prior works [5,22] has achieved improved (subquadratic in n) total time complexity under221

additional assumptions on the dynamic network model (these are different from what is222

considered here). In particular, the work of [22] considers a dynamic network and presents223

an information spreading algorithm that can have subquadratic time complexity under some224

restricted conditions, e.g., when the dynamic mixing time (defined in [22]) is small. The225

work of [22] does not address amortized message complexity at all and the result in the226

oblivious adversary setting of this paper do not follow from the results of [22]. Both papers227

use techniques based on random walks (which are very useful in the oblivious setting) which228

were originally developed in [23,24], but the algorithms are quite different.229

While the work of [26] adopts the strongly adversarial model and local broadcast commu-230

nication (we adopt the same model here for the local broadcast communication —cf. Section231

2), the work of [5,22] adopts the oblivious adversary model (we also adopt the oblivious model232

here for unicast communication in Section 3.2.2), a novel aspect of this paper is introducing233

and adopting a new communication cost model that measures the communication cost of an234

algorithm as a function of the amount of topological changes that occur in a given execution235

and a new message complexity measure called adversary-competitive message complexity236

(Section 1.3). A main contribution of this paper shows that under this new complexity237

measure, one can obtain an efficient amortized message complexity for unicast communication238

that is significantly better than the worst-case bound of Ω(n2). Our new measure is inspired239

by and related to the notion of resource competitive algorithms [15], although the details are240

different. The previous measure does not address an adversary in the context of dynamic241

networks.242

1.3 Dynamic Network, Communication, and Cost Model243

In the following, we formally define the dynamic network model, the communication models244

we consider, as well as the way in which we measure the communication cost (or message245

complexity) of a given token dissemination algorithm.246

Dynamic Network Model: We model the network as a synchronous dynamic graph G247

with a fixed set of nodes V . Nodes communicate in synchronous rounds where round r starts248

at time r − 1 and ends at time r. For any integer r ≥ 1, we use Gr = (V,Er) to denote249

the graph of round r. Throughout, we use n := |V | to denote the number of nodes and250

mr := |Er| to denote the number of edges in round r. For convenience, we define E0 := ∅251

and thus G0 is the empty graph (V, ∅). For every r ≥ 0, we call E+
r := Er \ Er−1 the set of252

edges inserted in round r and we call E−r := Er−1 \Er the set of edges removed in round r.253

In order to always allow progress when globally broadcasting a message, we assume that254

each graph Gr is connected for r ≥ 1. We sometimes also need the property that every edge255

which gets inserted remains in the graph for at least a given number of rounds. For an integer256

σ ≥ 1, we call a graph σ-edge stable if for every r ≥ 1 and every edge e ∈ Er, there exists257

a round r′ ≥ max {1, r − σ + 1} such that e ∈ Er′ ∩ · · · ∩ Er′+σ−1. Hence, after it appears,258

every edge remains in the graph for at least σ consecutive rounds. Note that every dynamic259

graph is 1-edge stable.260

We assume that the dynamic topology is provided by a worst-case adversary. There261

are adversaries of different strengths, depending on the capability of adaptively reacting262

to random choices of a given algorithm. In this paper, we distinguish between a strongly263

adaptive adversary and an oblivous adversary. The strongly adaptive adversary knows the264

algorithm’s randomness of the current round in order to determine the dynamic topology for265
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that round4. The oblivious adversary is oblivous to any randomness used by the algorithm266

and to any decision made by the algorithm, i.e., it has to commit to the sequence of network267

topologies before the execution of a distributed algorithm starts. Note that for deterministic268

algorithms, both adversaries are the same.269

Communication Model: Throughout the paper, we assume that each node v ∈ V has a270

unique O(logn)-bit identifier ID(v) and that in each round, each node can send messages271

containing a constant number of tokens and O(logn) additional bits to its neighbors. We272

distinguish different modes of communication, depending on whether the message exchange273

among neighbors is based on local broadcast or on unicast.274

1. Local Broadcast Communication: In each round r, each node v can locally broadcast275

a message which is received by all neighbors of v. Node v learns the set of neighbors in round276

r when receiving the round r messages from them.277

2. Unicast Communication: At the beginning of each round r, each node v is informed278

about the IDs of its neigbors in round r. Node v can then send a different message to each279

neighbor.280

Note that if the neighborhood information is not available instantaneously, it can be281

obtained by exchanging messages. As a consequence, in a 2-edge stable dynamic graph, the282

known neighborhood information and unknown neighborhood information are equivalent283

with a cost of extra messages.284

Communication Cost: The communication cost of a protocol is measured by its message285

complexity, i.e., by the total number of messages sent by all the nodes throughout the whole286

execution.287

I Definition 1 (Message Complexity). The message complexity of a distributed algorithm is288

the total number of messages sent in a worst-case execution. If communication is by local289

broadcast, each local broadcast by some node counts as one message. If communication is by290

unicast, messages to different neighbors are counted separately.291

The main focus of this article is to study the message complexity of solving the token292

dissemination problem.293

I Definition 2 (k-Token Dissemination Problem). For some positive integer k, k distinct294

tokens are initially placed at some nodes in the network. The goal is to disseminate all the k295

tokens to all the nodes in the network.296

As discussed in Section 1, we are particularly interested in understanding to what extent297

dynamic topology changes affect the communication cost of token dissemination. We thus298

consider a cost model that measures the communication cost of an algorithm as a function299

of the number of topological changes. We formally define the number of topological changes300

TC(E) of an execution E as the total number of edges that are inserted throughout an301

execution, i.e., for an x-round execution E with dynamic graph Gr = (V,Er), we have302

TC(E) :=
∑x
r=1 |E+

r |.5 The following definition captures the notion that for each dynamic303

change caused by the dynamic network adversary, a distributed algorithm is allowed to send304

a given number of messages “for free”.305

4 In comparison, a weakly adaptive adversary only knows the algorithm’s randomness up to the round
before the current round.

5 Note that since we assume that at time 0 we start with an empty graph, the total number of edge
deletions is always upper bounded by the total number of edge insertions. Hence we only count the
edge insertions and not the edge deletions.
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I Definition 3 (Adversary-Competitive Message Complexity). Given a parameter α ≥ 0, we306

say that a distributed algorithm has α-adversary-competitive message complexity M if for307

every execution E , the total message complexity of the algorithm is upper bounded by308

M + α · TC(E).309

To capture the progress of an algorithm, one way is to count how many new tokens have310

been received so far by the nodes.311

I Definition 4 (Token Learning). A token learning is an event 〈v, τ, r〉 that occurs in some312

x-round execution E if and only if node v receives token τ for the first time in round r, where313

r ≤ x. Then, we say v learns τ in round r.314

Based on the above definition, if each of the k tokens is initially given to exactly one315

of the n nodes, it is trivial that k(n − 1) token learnings must occur during an algorithm316

execution solving k-token dissemination.317

2 Local Broadcast Model318

Before we go to the unicast setting, which is the main focus of this paper, we present a tight319

quadratic (in n) lower bound for the amortized message complexity of disseminating k tokens320

in the local broadcast setting.321

We assume that each of the k tokens can initially be given to an arbitrary subset of the322

nodes with the only restriction that the nodes initially have at most k/2 tokens on average.323

We further assume that k is at most polynomially large in n. Our lower bound is an extension324

of the time complexity lower bound, which was developed by Dutta et al. in [26] and which325

was slightly generalized and simplified in [30]. The main idea of the lower bound is as follows.326

If initially, each token is given to each node independently with a constant probability, the327

lower bound shows that in each round of any k-token dissemination algorithm execution, a328

strongly adaptive adversary can enforce that in total at most O(logn) tokens are learned329

by the nodes. Because by the end of an execution, the nodes together need to learn Θ(nk)330

tokens (each node needs to learn the tokens it does not know initially), this directly implies331

a Ω(nk/ logn) time complexity lower bound. Here, we adapt the technique of the lower332

bound of [26, 30] to show that in any round with at most O(n/ logn) broadcasting nodes6, a333

strongly adaptive adversary can prevent any new tokens from being learned. Because the334

nodes together need to learn Θ(nk) tokens, together with the upper bound of O(logn) on the335

number of tokens learned in a single round, this implies that a strongly adaptive adversary336

can force any token dissemination algorithm to require at least Ω(nk/ logn) rounds with at337

least Ω(n/ logn) broadcasting nodes. This leads to the overall message complexity of at least338

Ω(n2k/ log2 n).339

To prove our lower bound, we mostly use the notation in [30]. Let T denote the set of k340

tokens, and for each node v ∈ V , let Kv(t) be the set of tokens that node v knows by time t.341

In each round r, let iv(r) denote the token broadcast by node v if v is a broadcasting node342

in round r. If v is not a broadcasting node in round r, we define iv(r) := ⊥. Note that a343

strongly adaptive adversary can determine the dynamic graph topology of round r after each344

node has chosen the token iv(r) to locally broadcast. Generally, a collection of pairs
(
v, iv

)
,345

where v ∈ V and iv ∈ T ∪ {⊥} is called a token assignment.346

6 Throughout this section, we call a node that performs a local broadcast in some round r, a broadcasting
node in round r.
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In addition, the adversary determines a token set K ′v ⊆ T for each node v. The sets347

K ′v are just used for the analysis. Informally, one can think of K ′v as an additional set of348

tokens that node v knows at time 0. Formally, we do not assume that node v knows the349

tokens in K ′v initially, but whenever v learns a token from K ′v, we do not count this as350

progress (i.e., for node v, we only count how many tokens from T \K ′v it has learned). To351

formally measure the progress, we define a potential function Φ(t) :=
∑
v∈V |Kv(t) ∪K ′v|.352

Recall that we assume that initially on average, each node knows at most k/2 tokens, i.e.,353 ∑
v∈V |Kv(0)| ≤ nk/2. The adversary chooses the sets K ′v in such a way that Φ(0) ≤ 0.8nk.354

In order to solve the token dissemination problem, the potential has to grow to nk. The355

choice of the sets K ′v therefore guarantees that the potential needs to grow by at least 0.2nk356

throughout the execution of a k-token dissemination protocol.357

To study the growth of the potential function, the following notion is used. An (potential)358

edge {u, v} is called free in round r, if and only if the communication over {u, v} does not359

contribute to Φ(r)− Φ(r − 1), i.e., {u, v} is free if and only if iu(r) ∈ {⊥} ∪Kv(r − 1) ∪K ′v360

and iv(r) ∈ {⊥} ∪ Ku(r − 1) ∪ K ′u. Otherwise, the edge {u, v} is called non-free. When361

determining the topology of round r, a strongly adaptive adversary can always add all free362

edges to the graph Gr without causing any increase of the potential function. If after adding363

all free edges, the graph has ` connected components, the adversary needs to add ` − 1364

additional edges “non-free” edges in order to make Gr connected. The potential function365

can then grow by at most 2(` − 1) because over each of these additional ` − 1 edges, one366

token can be learned in each direction. In [26,30], it is shown using a probabilistic method367

that the sets K ′v can be chosen such that Φ(0) ≤ 0.8nk and such that in each round, the368

graph induced by only the free edges has at most O(logn) connected components. Every369

algorithm therefore needs at least Ω(nk/ logn) rounds for the potential to grow to nk.370

The following lemma from [30] shows that if each token is randomly added to each set K ′v371

independently with probability 1/4, adding all free edges reduces the number of components372

to O(logn) for all rounds with constant probability.373

I Lemma 5. (Lemma 1 of [30]) If each set K ′u contains each token i ∈ T independently374

with probability 1/4, with probability at least 3/4, for all rounds r and all possible token375

assignments (v, iv(r)) in round r, the graph F (r) induced by all free edges in round r has at376

most O(logn) connected components.377

We next show that if the number of broadcasting nodes is small, adding all free edges378

leaves only one connected component. For a constant c > 0, we define a token assignment379

(v, iv) to be c-sparse if at most n/(c logn) of the nodes are broadcasting nodes (i.e., for at380

most n/(c logn) nodes, we have iv 6= ⊥).381

I Lemma 6. There is a constant c > 0 such that if each set K ′u contains each token i ∈ T382

independently with probability 1/4, with probability at least 1− 2−n, for all rounds r and all383

possible c-sparse token assignments (v, iv(r)), the graph F (r) induced by all free edges in384

round r consists of a single connected component.385

Proof. We first bound the probability for a fixed c-sparse token assignment (v, iv). The386

claim of the lemma will then follow by a union bound over all the possible c-sparse token387

assignments. Let B denote the set of broadcasting nodes, i.e., the nodes for which iv 6= ⊥.388

Further, let β := |B| ≤ n/(c logn) and let B̄ := V \ B. Clearly, all the edges among the389

nodes in B̄ are free. It is therefore sufficient to show that for each node v in B, there is a390

free edge connecting v to a node in B̄. Then, all the free edges induce a connected graph391

over all the nodes (also see Figure 1).392
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free edges
B B̄

Figure 1 It shows the connected graph induced by (a subset of) the free edges in a round with at
most O(n/ log n) broadcasting nodes. The free edges among the nodes in B̄ induce a clique, and each of
the broadcasting nodes in B is connected to some node in B̄ by a free edge.

Consider an edge {u, v}, where u ∈ B̄, v ∈ B, and v is locally broadcasting token τ . Edge393

{u, v} is a free round (for every round r) if τ ∈ K ′u(0). This happens with probability 1/4394

(independently for every node u ∈ B̄). The probability that v has no free edge to some node395

in B̄ is thus at most (1/4)n−β . Thus, the probability that there exists at least one node in B396

that has no free edge to B̄ is at most β/4n−β . Considering a union bound over all
(
n
β

)
< nβ397

ways to choose a set of β nodes and all at most kβ ways to choose the tokens to be sent out398

by these nodes, the probability that there exists a token assignment for which there is a node399

in B that has no free edge to B̄ can therefore be upper bounded by400

Pr(∃v ∈ B s.t. ∀u ∈ B̄ : {v, u} is non-free)401

≤ nβ · kβ · β

4n−β402

= 2β(log(nk)+2)+log β−2n
403

≤ 4 c
2β logn−n [for some constant c]404

< 2−n [for β < n

c logn ]405

406

Hence, with probability at least 1− 2−n, for each possible token assignment (and for each407

round), each node v ∈ B has a free edge connected to some node in B̄. J408

I Theorem 7. In any always connected dynamic network, if initially each node on average409

knows at most half of the k tokens, the amortized message complexity of solving the k-token410

dissemination problem against a strongly adaptive adversary is at least Ω(n2/ log2 n) in the411

local broadcast communication model.412

Proof. Using the probabilistic method, we show that the adversary can choose the sets K ′u413

such that at time 0, Φ(0) ≤ 0.8nk and such that for every possible strategy of the algorithm,414

the adversary can choose the graph of each round such that (1) the graph is connected,415

(2) the number of connected components after adding all free edges is at most O(logn),416

and (3) if there are at most n/(c logn) broadcasting nodes, for a sufficiently large constant417

c > 0, the free edges induce a connected graph. The theorem then follows because (a) the418

potential needs to grow by 0.2nk in order to solve the token dissemination problem and419

(b) the potential increase per round is always at most O(logn) and it is 0 if the number of420

broadcasting nodes is less than n/(c logn).421

To apply the probabilistic method, we let each set K ′u contain each token i ∈ T in-422

dependently with probability 1/4. First note that by a standard Chernoff argument, the423
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probability that
∑
|K ′u| > 0.3nk is exponentially small in nk and thus the probability that424

Φ(0) > 0.8nk is also exponentially small in nk. Further, by Lemma 5 and Lemma 6, for425

every round r, and every token assignment (v, iv(r)), the graph F (r) induced by all the free426

edges has the following two properties with probability at least 3
4 − 2−n: (1) F (r) contains427

at most O(logn) connected components, (2) F (r) is connected over all the nodes if there are428

at most n/(c logn) broadcasting nodes. This shows that (for sufficiently large n), there is429

a way to choose the sets K ′u sets such that Φ(0) ≤ 0.8nk, the potential increase per round430

is at most O(logn), and if there are at most n/(c logn) broadcasting nodes, the potential431

increase is 0 and the claim of the theorem follows. J432

3 Unicast Model433

We want to solve the k-token dissemination problem where the k tokens are initially distributed434

(arbitrarily) over the network and the goal is to disseminate all the tokens to all the nodes435

with as few messages as possible. To solve this problem, it turns out that it is first easier to436

consider a special instance — called the Single Source Case — where all the k tokens are437

initially located in a single source node. We use the Single Source Algorithm (Section 3.1) as438

a subroutine to solve the more general Multi-Source case (Section 3.2).439

3.1 Single Source Node440

Consider the k-token dissemination problem such that all the k tokens are initially given to a441

single source node. Let us now present a deterministic algorithm to solve this problem with442

message complexity of O(n2 +nk) + TC(E) against a strongly adaptive adversary. Hence, the443

algorithm has 1-adversary-competitive (total) message complexity of O(n2 + nk) (cf. Def. 3).444

In other words, if the algorithm is provided with a budget that equals to the number of445

topological changes, then for sufficiently large k, the amortized message complexity to446

disseminate the tokens is linear in n. Note that even in a static graph, the cost to disseminate447

a single token is Ω(n). Hence, if the number of tokens is at least linear in n, the amortized448

message complexity is asymptotically best possible. Before we present the algorithm and its449

analysis, consider the following definitions.450

I Definition 8 (Complete and Incomplete Node). We say that node v is complete at time t if451

it has all the k tokens at this time. Otherwise, v is incomplete.452

I Definition 9 (Bridge Node). In each round, any incomplete node that has a complete453

neighbor is called a bridge node for that round.454

3.1.1 Single-Source Unicast Algorithm455

The source node considers an arbitrary order of the tokens and assigns integer i to its ith456

token as its token ID. In the algorithm, only complete nodes send tokens during an execution.457

To this end, each complete node announces its completeness to its neighbors. In each round,458

each incomplete node sends token requests to (some of) its complete neighbors. Then, in459

the very next round, each complete node sends back the requested tokens to the requesting460

nodes if it is still connected to them. Although the general idea is simple, a careful strategy461

is needed to avoid redundant communication.462

Each complete node v informs each node about the time of v’s completeness at most463

once by remembering which nodes v informed before. Each node also remembers all the464

complete nodes it is informed by about their completeness. Each incomplete node chooses465
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Algorithm 1 Single-Source-Unicast
Initially, the source node labels the tokens from 1 to k as token IDs, and the following code
is run by any node v in any round r.
1: if v is complete then
2: for all v’s neighbor u do
3: if u does not know v’s completeness then
4: send Completeness to u
5: else if u sent Request(i) in round r − 1 then
6: send the ith token to u
7: else if {b1, b2, . . . , bγ} is the ID set of missing tokens for v then
8: j ← 0
9: for all v’s new edge e do
10: if j < γ then
11: j ← j + 1
12: send Request(bj) over e
13: for all v’s idle edge e do
14: if j < γ then
15: j ← j + 1
16: send Request(bj) over e
17: for all v’s contributive edge e do
18: if j < γ then
19: j ← j + 1
20: send Request(bj) over e

among its complete neighbors for sending token requests to, based on a priority defined by466

the following categorization of its adjacent edges.467

Consider an edge e = {v, w} ∈ Er such that v is incomplete and w is complete. Then e is468

called new in round r if the edge is inserted at the beginning of round r or r − 1. Edge e is469

called contributive if it is not new, but a new token is sent over it between the last insertion470

of the edge and the end of round r, i.e., it contributes to the dissemination. Otherwise, if e471

is neither new nor contributive, it is called idle in round r.472

Based on the above definitions, if v has τ missing tokens, it creates τ token requests,473

one for each missing token. Then, v assigns exactly one distinct token request to each of474

the new edges (if any). Afterwards, if there are still token requests left to be assigned, v475

assigns exactly one request to each of the idle edges (if any). Finally, v does the same for the476

contributive edges. Note that as each edge has at most one assigned token request, there477

might be token requests that are not assigned in the current round. At the end, v sends the478

assigned token requests in round r over the corresponding edges.479

Note that for categorizing an adjacent edge e = {v, w}, an incomplete node v might need480

to know whether it learns a token over e in round r or not. However, if v sends a token481

request over e in round r− 1, and e ∈ Er, then v knows that it learns a token over e in round482

r. Moreover, to avoid sending redundant token requests, node v needs to know whether it483

learns some requested token in round r or not. However, v knows the token requests it sent484

over its adjacent edges in round r − 1. Then, by knowing the adjacent edges in round r, and485

the fact that complete nodes immediately respond to requests, v knows what tokens it learns486

in round r. The pseudocode is given in Algorithm 1.487
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3.1.2 Analysis488

First, let us argue the message complexity of the algorithm. Then, we show that with a489

natural stability assumption the time complexity is also small.490

I Theorem 10. Given k tokens to disseminate in a dynamic network against a strongly491

adaptive adversary, the Single-Source Unicast Algorithm has 1-adversary-competitive message492

complexity of O(n2 + nk).493

Proof. There are three different types of messages sent by nodes during the algorithm494

execution; (1) token, (2) completeness announcement, and (3) token request. Each node495

sends the request of each distinct token to at most one neighbor in a round. If the connection496

to that complete neighbor remains for the very next round, then the requested token will be497

successfully received by the node and the node stops sending this token request. Therefore,498

each distinct token is received by each node once, and hence there are at most O(nk) sent499

messages of type 1 throughout the execution.500

Each of the n nodes informs at most n− 1 other nodes about its completeness throughout501

the execution. Since each node avoids informing the same node more than once, at most502

O(n2) messages of type 2 are sent throughout the execution.503

It remains to show that the number of sent messages of type 3 is at most O(nk) + TC(E)504

during execution E . In each round where a token request is sent by some node, a new token is505

received in the next round unless the edge is removed. Therefore, we can say that the number506

of token requests sent at any time is at most O(nk) plus the number of edge deletions. O(nk)507

comes from the fact that there exist k tokens and each token is received by at most O(n)508

nodes, each token once. Furthermore, since we assume that the initial graph is an empty509

graph, the number of edge deletion is upper bounded by TC(E). J510

In the following, we argue that with a natural stability assumption, the algorithm511

disseminates all the tokens and terminates fast. The following two lemmas show that512

prioritization of sending token requests over different edge types ensures fast dissemination.513

I Definition 11 (Futile Round). Round r is a futile round, if no token request is sent over a514

contributive edge in round r, and no token learning occurs in rounds r + 1 and r + 2.515

I Lemma 12. Let r be an arbitrary futile round in any execution of the Single-Source Unicast516

Algorithm on a 3-edge stable dynamic network. Then, if there exist ` bridge nodes in round517

r, at least ` idle edges are removed at the end of round r.518

Proof. First, let us show that every bridge node has an adjacent idle edge in round r. If519

there exists a new edge in round r, due to the 3-edge stability property and the higher520

priority of sending requests on new edges, a token is learned in at least one of rounds r + 1521

or r + 2. Hence, there exists no new edge in round r. Now, for the sake of contradiction, let522

us assume that there exists a bridge node b in round r that does not have an adjacent idle523

edge. Since b cannot have an adjacent new edge either, it must have at least one contributive524

edge. Therefore, b sends a request over at least one of its contributive edges in round r,525

contradicting the assumption that r is a futile round.526

Since every bridge node has an idle edge and no new edge, due to the mentioned priority527

rules, a bridge node sends a request over at least one of its idle edges. Since no new token is528

learned in round r + 1, the idle edge carrying a request must be removed. Hence, from each529

bridge node at least one idle edge is removed at the end of round r. J530

I Lemma 13. In any execution of the Single-Source Unicast Algorithm on a 3-edge stable531

n-node dynamic network, there are at most n futile rounds until the last token request is sent.532
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Proof. Let us first argue that it is not possible for a new edge to become idle. For any533

round r > 0, consider an arbitrary new edge e = {u, v} ∈ E+
r , where u is complete and v is534

incomplete. Then in round r + 2, either e is contributive or v is complete. Because, the only535

case that v does not send a token request over e in rounds r or r+1 is when v sends all its left536

token requests over its other new edges in rounds r or r + 1. Then, due to 3-edge stability, v537

will receive its requested tokens by the end of round r+ 2 and becomes complete. Otherwise,538

v sends a token request over e in rounds r or r + 1, and hence e becomes contributive by the539

end of round r + 2.540

Then, the only case when an edge becomes idle in round r, is when both endpoints are541

incomplete in round r − 1 and only one of them becomes complete in round r. Since each542

node v becomes complete only once, the number of v’s idle edges never increases throughout543

the execution after v’s completion.544

Now consider an arbitrary futile round where the largest number of idle edges of any545

complete node in a futile round is x. Hence, there exist at least x bridge nodes in that round.546

Thus, by Lemma 12, at least x idle edges are removed at the end of that futile round. As a547

result, one can see that there cannot be any idle edges, and hence any futile rounds, after548

having n futile rounds. This shows that the number of futile rounds is at most n until the549

last token request is sent. J550

I Theorem 14. Given k tokens to disseminate, if the dynamic graph is 3-edge stable, the551

Single-Source Unicast Algorithm terminates in O(nk) rounds and all the nodes receive all552

the k tokens.553

Proof. Consider any time t during an arbitrary execution of the Single-Source Algorithm554

that is not terminated yet. Let k′ denote the number of token learnings in [0, t]. Let us show555

that the number of periods of two consecutive rounds in [1, t] in which no token is learned is556

at most k′ + n. This leads to O(nk) running time for the algorithm.557

Let r and r + 1 be arbitrary two consecutive rounds in [1, t], where no token is learned.558

Hence, there is no new edge in round r − 1, otherwise, a token would have been learned in559

round r or r+ 1 due to the 3-edge stability property and the higher priority of sending token560

requests on new edges. Then, there are two possibilities:561

Case 1: At least one contributive edge carries a token request in round r − 1. Since it is562

assumed that no token is learned in round r, the edge must be removed by the adversary563

at the end of round r − 1. Therefore, we can map one of the removed contributive edges564

to round r. Doing so, for any such round r, a distinct token learning in [0, t] is mapped to565

r (i.e., one of the token learnings that happened on the removed contributive edge after566

its last insertion). Therefore, since there is a one to one mapping between such rounds567

and a subset of token learnings in [0, t], the number of such rounds (i.e., r) is not more568

than the number of token learnings in [0, t].569

Case 2: No contributive edge carries a token request in round r − 1. Therefore, round570

r− 1 is a futile round. Then, based on Lemma 13, the number of such rounds (i.e., round571

r) is at most n throughout the execution.572

J573

3.2 Multiple Source Nodes574

Let us consider a more general case where the tokens are initially given to more than one575

source node. Assume that there are s source nodes a1 < a2 < · · · < as such that for 1 ≤ i ≤ s,576

ai is initially given ki tokens. Hence, in total k =
∑
i ki tokens need to be disseminated.577



M. Ahmadi, F. Kuhn, S. Kutten, A.R. Molla and G. Pandurangan XX:15

3.2.1 Strongly Adaptive Adversary578

To solve this problem against a strongly adaptive adversary, we present a deterministic579

algorithm with O(n2s+nk)+TC(E) message complexity. It extends the Single-Source Unicast580

Algorithm, and has the same running time if the network has the same stability assumption581

(i.e., 3-edge stability). However, it has a higher message complexity than the Single Source582

Unicast Algorithm since each node needs to announce its completeness regarding s different583

source nodes to other nodes in its neighborhood throughout the algorithm execution.584

Since there are more than one source nodes, we need to include the intended source node585

in the definitions of Section 3.1. So we say a node is complete with respect to source node a,586

if it has received all the tokens originated at a. Similarly, a node is called a bridge node with587

respect to source node a, if it is an incomplete node with respect to a and is connected to a588

node which is complete with respect to a.589

Multi-Source-Unicast Algorithm590

The algorithm considers a priority over the dissemination of tokens from different sources.591

To do so, in each round, all nodes give the highest priority to the dissemination of the tokens592

from the minimum known source node whose dissemination is not yet complete. In the593

sequel, we explain the details of implementing this idea.594

Initially, each source node x considers an arbitrary order of its tokens and assigns a token595

identifier containing its own ID and an integer i (i.e., 〈IDx, i〉) to its ith token. Moreover, we596

assume that each source node becomes complete with respect to itself at time 0. To avoid597

redundant communication, each node v keeps some information about the execution history598

by constantly updating the following sets. Rv(x) is the set of all nodes that are informed by599

v about the v’s completeness with respect to x. Sv(x) is the set of nodes that informed v600

about their completeness with respect to x. Iv is the set of all source nodes with respect to601

which v is complete. Then each node v in each round of the execution does the following602

three tasks in parallel: (1) For each edge {v, w}, if there is any source node x such that603

x ∈ Iv and w /∈ Rv(x), it picks the minimum such x and sends “completeness announcement604

with respect to x” to w; (2) For each edge {v, w}, if v received a request for token τ from605

w in the previous round, then it sends τ to w; (3) Node v picks the minimum x such that606

x /∈ I(v) and Sv(x) 6= ∅. Then, regarding sending token requests, it acts similarly to the607

Single-Source Unicast Algorithm as there exists only the single source x in the network.608

I Theorem 15. To disseminate k tokens which are initially distributed among s source609

nodes, Multi-Source Unicast Algorithm has a 1-adversary-competitive message complexity of610

O(n2s+ nk).611

Proof. Arguing the message complexity of Multi-Source Unicast Algorithm is almost similar612

to the proof of Theorem 10. Similarly, we consider the three different types of messages613

throughout the algorithm execution; (1) token, (2) completeness announcement, and (3)614

token request. The number of tokens of type 1 and 3 is exactly the same as running the Single615

Source Unicast Algorithm. However, the number of messages of type 2 differs. In case of616

running the Single Source Unicast Algorithm, each node needs to inform any other node in its617

neighborhood about its completeness once throughout the algorithm execution. The reason618

is that there is only one source node, and each node achieves completeness just regarding the619

only source node in the network. But in case of running Multi-Source Unicast Algorithm,620

each node becomes complete regarding s different source nodes. Therefore, each node should621

announce its completeness regarding each of the s source nodes to every other node in622

its neighborhood throughout the algorithm execution, which leads to O(n2s) messages in623

total. As a result, O(nk) messages of type 1, O(n2s) messages of type 2, and O(nk) + TC(E)624
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messages of type 3 proves the 1-adversary-competitive message complexity of O(n2s+ nk)625

for Multi-Source Unicast Algorithm. J626

I Theorem 16. Given k tokens to disseminate, if the dynamic graph is 3-edge stable Multi-627

Source Unicast Algorithm terminates in O(nk) rounds and all the nodes have received all the628

k tokens.629

Proof. Theorem 14 states when all the k tokens are initially given to one source node, by630

running Single-Source Unicast Algorithm, k-token dissemination is complete in at most O(nk)631

rounds. Multi-Source Unicast Algorithm guarantees that the minimum ID source node that632

its token dissemination is not complete yet runs the Single-Source Unicast Algorithm without633

any interference until its token dissemination is complete. It is guaranteed by having all the634

nodes giving the highest priority to the token dissemination of the the minimum ID source635

node with incomplete token dissemination.636

Therefore, if the Single-Source Unicast Algorithm solves k-token dissemination in cnk637

rounds for some constant c, then the token dissemination of the first minimum ID source638

node is complete after cnk1 rounds and the second one after the next cnk2 rounds and so on.639

Hence, the whole running time is O(nk), where k =
∑s
i=1 ki.640

J641

3.2.2 Oblivious Adversary642

In case the ratio of the number of disseminated tokens to the number of source nodes is643

large enough, i.e., k/s = Ω(n), the algorithm presented in Section 3.2.1 has an efficient linear644

amortized message complexity. However, for example, in case of having Ω(n) source nodes645

and O(n) tokens to be disseminated, the amortized message complexity of the algorithm646

would be Ω(n2) due to Theorem 15. In this section, we focus on instances with large number647

of source nodes and o(n2) tokens in total are distributed arbitrarily among the source nodes.648

Assume that the number of source nodes and the total number of tokens are initially known649

to the nodes. Then, we show that by weakening the adversary from an adaptive one to an650

oblivious one, a better amortized message complexity can be achieved when the ratio k/s is651

small. Hence in the sequel we assume that k/s = o(n) and k = o(n2).652

The key idea is to efficiently reduce the number of source nodes and then simply run the653

Multi-Source-Unicast algorithm for this smaller set of sources. Hence, the algorithm runs in654

two phases. In the first phase, a (small) subset of nodes is chosen as new source nodes, and655

all the tokens are efficiently sent to these new source nodes. Let us call the new source nodes656

centers. Then, in the second phase, the Multi-Source-Unicast algorithm is executed with the657

centers as the source nodes.658

Let us now explain the first phase in details. If the number of source nodes is less than659

n2/3 log5/3 n, nothing is done in the first phase and the second phase is started right away by660

running the Multi-Source-Unicast algorithm (by considering all the source nodes as centers).661

Therefore, in the sequel, let us assume that the number s of source nodes is more than662

n2/3 log5/3 n. We aim to reduce the number of source nodes from s to f , where parameter f663

denoting the number of centers will be determined later. Then, the f centers own all the664

tokens at the end of the first phase.665

Each node independently marks itself as a center with probability f/n. Therefore, in666

expectation, there are f centers. Then, each token owned by any source node (which is not667

marked as a center) needs to reach to some center. The tokens owned by one source node668

may reach different centers. However, each token is owned by exactly one center at the end of669

the first phase. To have this new token assignment, each of these tokens performs a random670
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Algorithm 2 Oblivious-Multi-Source-Unicast
Input to each node: Number of source nodes s and total number of tokens k
Output: Every node receive all the k tokens

1: if s ≤ n2/3 log5/3 n then
2: Run Multi-Source-Unicast algorithm with the s source nodes
3: else if s > n2/3 log5/3 n then . [Phase 1: Reducing no. of source nodes to
f = n1/2k1/4 log5/4 n centers]

4: Each node elects and marks itself as a center with probability f/n
5: for round r = 1, 2, . . . ` do . [` = k

1
4n

5
2 log

9
4 n]

6: Each node u owning at least one token does the following for each token τ :
7: if d(u) < n1/2(k logn)−1/4 then . [low degree; d(u) is degree of u in round r]
8: With probability 1/d(u), go to Step 9, and otherwise Step 10
9: Send τ to a random neighbor . [If congestion allows, otherwise keep the token]
10: else if d(u) ≥ n1/2(k logn)−1/4 then . [high degree]
11: Send one token (if any) to each of the neighboring centers
12: Go to Step 2 with s = f . [Phase 2: Run Multi-Source-Unicast algorithm]

walk (in parallel) until they reach a center. Once a token reaches a center, it stops there671

and the center owns the token. Since in expectation, there are f uniformly random centers672

among the n-nodes, any fixed set of O(n logn/f) distinct nodes must have at least one center673

with high probability (w.h.p.). That is, each random walk token has to visit Ω(n logn/f)674

distinct nodes to guarantee that it hits a center w.h.p. For this, we apply a known random675

walk visit bound (see Lemma 17 below) for the dynamic setting [22].676

To perform the desired random walks, we construct a virtual n-regular multigraph by677

adding an appropriate number of self-loops to the network at each round. To do so, for any678

round r, each node with degree δ in the graph adds n− δ virtual self-loops as its adjacent679

virtual edges. Note that a random walk step on a virtual edge is not count in the message680

complexity, but it increases the time complexity. Due to the assumed bandwidth restriction681

(i.e., congestion) of the actual edges, not necessarily all the tokens perform a random walk682

step in each round. Therefore, we say a token is active in a round when it performs a random683

walk step whether it traverses an actual or virtual edge. Otherwise, we say that the token684

is passive. Consider γ = (n logn)/f as a predefined degree threshold. We call a node with685

degree larger than γ a high-degree node; otherwise it’s a low-degree node. Recall that a686

high-degree node must have at least one center among its neighbors with high probability.687

Consider an arbitrary low-degree node v with degree δv, and let T be the set of tokens at688

node v at the beginning of round r. Node v processes each token τ in T as follows. With689

probability 1− δv/n, token τ traverses a self-loop, i.e., it remains at node v. With probability690

δv/n, v chooses one of its adjacent edges e uniformly at random, and if v has not yet sent any691

token over e in round r, token τ is sent over e. Therefore, a token at a low-degree node might692

be passive in a round because of the congestion for the edges. Now consider a high-degree693

node u with degree δu in round r. Then w.h.p. node u has at least one center among its694

neighbors. To each of its neighboring centers, u sends one of the tokens owned by node u (if695

any) at the beginning of round r. Since the number of u’s neighboring centers might be less696

than the number of tokens at node u, not necessarily all the tokens at node u are sent to the697

neighboring centers in the round r. Therefore, a token at u is passive until it is either sent698

to one of u’s neighboring centers, or the degree of u becomes lower than the threshold and699
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the token resumes the random walk. This way a token continues walking until it reaches a700

center. The pseudocode is given in Algorithm 2.701

Analysis. Consider the random walk of an arbitrary token τ in the given dynamic graph702

G. As explained in the algorithm description, token τ is not necessarily active in all703

rounds throughout the algorithm execution. Let Gτ denote the (not necessarily consecutive)704

subsequence of G such that τ is active in each and every graph in Gτ . In each graph in Gτ705

(except the last one), token τ is sent from a node u to a node v such that u is a low-degree706

node. Therefore, all the nodes visited by τ in Gτ have actual degree at most γ.707

I Lemma 17 (Lemma 6.7 in [22]). Let G be a d-regular dynamic graph controlled by an708

oblivious adversary. Let N t
x(y) denote the number of visits of a random walk to vertex y709

by time t, given that the random walk started at node x. N t
x(y) could be zero or a positive710

number. Then for any nodes x, y and for all t = O(τmix), where τmix is the (dynamic)711

mixing time of G, Pr
(
N t
x(y) ≥ 2c+3 · d

√
t+ 1 logn

)
≤ 1/nc, for any constant c.712

The above lemma holds for any random walk with an arbitrary graph sequence provided713

by an oblivious adversary. We refer to [22] for more details. It states that a random714

walk of length L on a d-regular dynamic graph visits at least L/(2c+3d
√
L+ 1 logn) i.e.,715

Ω(
√
L/d logn) distinct nodes with high probability (for c = 4). Since only token traversal716

over the actual edges increases the message complexity, regarding Lemma 17, (to analyze the717

worst case message complexity) we only consider the upper bound for the actual degree of all718

the visited nodes by τ , which is γ. To have τ performing L actual steps, the walk takes at719

least Θ(nL/γ) steps w.h.p. on the constructed n-regular multigraph (using standard Chernoff720

bound). Therefore, due to Lemma 17, τ visits Ω
(

(
√
nL/γ)/n logn

)
= Ω

(√
L/(γn log2 n)

)
721

distinct nodes. As we discussed earlier, to have τ visiting a center during its walk w.h.p., it is722

enough that τ visits at least (n logn)/f distinct nodes. Thus, we get L = Ω
(
(n4 log5 n)/f3),723

by setting
(√

L/(γn log2 n)
)
≥ (n logn)/f and γ = (n logn)/f . This implies that each724

token performs a random walk of length at least (n4 log5 n)/f3 to guarantee that it reaches725

a center w.h.p. Since this is true for an arbitrary random walk token w.h.p, by union bound,726

it is also true for all the tokens.727

The following theorem shows that by setting the parameters properly, the desired message728

complexity is achieved.729

I Theorem 18. There is an algorithm with message complexity O(n5/2k1/4 log
5
4 n) to dis-730

seminate k = o(n2) tokens from Ω(n2/3 log5/3 n) source nodes in a dynamic network, in731

which the topology is controlled by an oblivious adversary. Hence, the amortized message732

complexity of the algorithm is O((n5/2 log
5
4 n)/k3/4).733

Proof. In the first phase, at most k tokens perform random walks of L (actual) steps734

each to reach some center. Note that this excludes message cost for the self-loop (virtual)735

edges. Therefore, it costs kL messages in the first phase. In the second phase, we run736

Multi-Source-Unicast algorithm with f source nodes. Due to Theorem 15, therefore, the737

message complexity of the second phase is O(fn2 + nk). Thus, the total message complexity738

is O(kL+ fn2 + nk). Parameter f is sub-linear in n, and L = Ω
(
(n4 log5 n

)
/f3). Hence, L739

is larger than n, and consequently kL > kn. The message complexity is O(kL+ fn2). To fix740
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parameter f , let us optimizing the sum (kL+ fn2) as follows.741

kL = fn2
742

⇒L = fn2/k743

⇒n4 log5 n/f3 = fn2/k [Substituting L = (n4 log5 n)/f3]744

⇒ f = n1/2k1/4 log5/4 n745
746

Thus, the total message complexity is O(fn2) = O(n 5
2 k

1
4 log

5
4 n).747

Therefore, the amortized message complexity to disseminate k tokens is

O(n 5
2 k

1
4 log

5
4 n)/k = O

(
n

5
2 log

5
4 n

k
3
4

)
.

J748

The following table highlights the amortized message cost for different sizes of the token set.749

Recall that, by our assumption s ≥ n2/3 log5/3 n and k = o(n2), and k ≥ s always.

Number of disseminated tokens (k) Amortized message complexity

O(n 2
3 log 5

3 n) O(n2)

O(n) O(n 7
4 log 5

4 n) = o(n2)
O(n 3

2 ) O(n 11
8 log 5

4 n)
O(n2) O(n log 5

4 n)
Table 1 The amortized message complexity for different number of tokens.

750

Remark. As mentioned before, in case of having less than n 2
3 log

5
3 n source nodes, Multi-751

Source-Unicast algorithm is executed. It is a deterministic algorithm, and hence works752

properly against an oblivious adversary. The total message cost of Multi-Source-Unicast753

Algorithm is O(n2s+ nk) (cf. Theorem 15). Therefore, the amortized message complexity is754

O(n
2s
k + n), which is upper bounded by O(n2), since the number of tokens is always larger755

than the number of source nodes, i.e., s/k ≤ 1. Therefore, when the number of source nodes756

is less than n 2
3 log

5
3 n, Multi-Source-Unicast algorithm is more efficient.757

Now let us analyze the running time of the algorithm. Since there are total k = o(n2)758

tokens and at least s = n2/3 log5/3 n source nodes, a source node may have as many as O(k−s)759

tokens to disseminate in the beginning. Further, since the dynamic graph is n-regular, as760

many as O(n) tokens from each node can be executed in parallel with at most O(logn)761

congestion over an edge. The reason is that if each node starts O(n) random walks in parallel,762

in expectation, each edge carries at most 2 walks (from both ends) in each round, and hence763

there will be at most O(logn) congestion over an edge with high probability. Therefore, to764

perform O(k − s) random walks (corresponding to O(k − s) tokens from a source node) in765

parallel, there would be at most O((k − s) logn/n) delay per step w.h.p. Another reason for766

a delay in the random walk of a token is that the token is at a high-degree node in some767

round and the number of neighboring centers is less than the number of tokens at that node768

in that round. Note that the number of such rounds is at most k, since in each such (delay)769

round there is at least one token that is being sent to a center.770

Since the length of the random walks (including virtual steps7) is O(nL) (assuming771

the worst case actual degree O(1) for the running time), the total time of the first phase772

7 The virtual steps are counted towards running time of the algorithm.
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is O((k − s) logn/n · (nL) + k) rounds. Since the second phase is the execution of Multi-773

Source-Unicast algorithm, it takes O(nk) time with the additional natural condition that774

the dynamic graph is 3-edge stable, as follows from Theorem 16. Hence, the total running775

time in phase 1 and phase 2 is O((k − s)L logn+ k + nk) rounds. The time bound becomes776

O
(

(k−s)n 5
2 log

9
4 n/k

3
4 +nk

)
≤ O

(
k

1
4n

5
2 log

9
4 n
)
, as L = O

(
n

5
2 log

5
4 n/k

3
4

)
and k = o(n2).777

4 Conclusion and Open Problems778

We studied the message complexity of information spreading in dynamic networks. While779

time complexity has been studied more intensely, understanding the message complexity in780

various dynamic network models is likely to shed light on the time complexity as well. Several781

open questions arise from our work. One key question is that we do note have tight bounds782

on the amortized message complexity of unicast under the strongly adaptive adversary (when783

not charging the adversary for topological changes). The only known bounds are the trivial784

O(n3) upper and Ω(n) lower bounds.785

A contribution of our work is introducing the adversary-competitive message complexity786

which is useful for studying algorithmic performance in dynamic networks as a function of787

the dynamism. We were able to show an optimal amortized message bound for unicast in this788

model for both the single-source and multi-source setting, when the number of tokens is large.789

However, when the number of tokens is small (say n) and they start from multiple sources790

(an important special case is one token starts from each node), we do not have a good bound.791

We were able to show only a o(n2) amortized bound under a weaker (oblivious) adversary.792

Improving this bound for oblivious adversary is an interesting open problem or showing a793

non-trivial bound for the strongly adaptive adversary is an interesting open problem. In794

the case of oblivious adversary, we assumed the number of source nodes and the number of795

tokens as inputs. It would nice if one can try to relax the assumptions. Also, developing796

efficient protocols for dynamic networks that perform well under the adversary-competitive797

measure for various problems is an interesting research goal.798
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