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Abstract

This report contains two theorems and their proofs supple-
menting our work published at the 40th German Conference
on Artificial Intelligence under the title ’Interval Based Re-
laxation Heuristics for Numeric Planning with Action Costs’.

Intro

In our paper on ’Interval Based Relaxation Heuristics for
Numeric Planning with Action Costs’ published at the 40th
German Conference on Atrtificial Intelligence (Aldinger and
Nebel 2017), we make two assertions which are supported
by the theorems in this addendum: the first on insertions into
a priority queue for acyclic numeric planning tasks and the
second assertion on NP-completeness of the global target
value optimization problem and of the generalized marking
method of hpp for numeric planning. In each of the two
upcoming sections, we elaborate on one of these assertions.
Both section starts with providing the background for the re-
spective assertion, continue with a formalization of the the-
orem and conclude with a proof thereof.

Acyclicity and Priority Queue Insertions

In Section 3.3 of our paper (Aldinger and Nebel 2017) we
discuss relaxation heuristics for numeric planning which use
a priority queue based fact selection strategy in a repetition
relaxation, an interval based relaxation where the semantics
of actions captures arbitrarily many repetitions of each effect
to the variables in an effort to make relaxed actions idempo-
tent.

As numeric variables can attain infinitely many values,
polynomial time computable heuristics have to restrict the
number of considered variable-interval pairs (denoted as
facts). One method is to only consider variable-interval pairs
that a generalized Dijkstra algorithm would use. Facts are
processed according to a priority queue storing the cost to
achieve them. A change in the value of a variable v trig-
gers all actions that have an effect depending on v, that is
v appears in the assigned expression of one of the actions
effects. If such an effect extends the current interval of v,
then the corresponding fact is enqueued (mapping to the

*University of Freiburg, Department of Computer Science
http://tr.informatik.uni-freiburg.de/2017/

convex union of the old value of v and the value reached
by the action’s effect). The facts which are considered by
the heuristic are then convex unions of the intervals in the
queue with the current value of the variable at dequeue time.
This additional use of the convex union is necessary to en-
sure monotonic growth of the intervals, as other actions can
alter a variable while the new interval is still in the priority
queue.

If actions are non-idempotent, such a priority queue based
fact selection method is not sufficient to bound the number
of facts. The motivation to use the repetition relaxation is
to make actions idempotent. The repetition relaxation cap-
tures one source of non-idempotence: repeatedly applying
the same effect to a variable. However, there are other
sources of non-idempotence which come from the interac-
tion of several variables. A variable v depends directly on
another variable w if w appears in the assigned expression of
a numeric effect of some action on v (Aldinger, Mattmiiller,
and Gobelbecker 2015)). This dependency relation induces a
dependency graph. If the dependency graph is acyclic, the
repetition relaxation can be computed in polynomial time by
evaluating variables according to the topology of that graph.
This way, the intervals of topologically higher variables have
already converged and changes in topologically lower lay-
ers can not influence the values of variables in topologically
higher layers.

Unfortunately, for planning tasks with action costs, prior-
ity queue based approaches alter variables in an order of the
cost to achieve new values, and this order does not neces-
sarily respect the topology. As such, the number of required
enqueue operations can become exponential in the number
of variables. The problem occurs if variables achieved by
cheap actions depend on many other variables achieved by
more expensive actions which reside in topologically higher
layers of the dependency graph.

Theorem 1. The number of insertions of numeric facts into
the priority can become super-polynomial even if the depen-
dency graph is acyclic.

Proof. Let Vy = {vo,...,vn} be a set of variables and
A ={an} U{a;0 < i < j < n} beasetof@—i—l
actions with costs y(a;;) = 2°, and y(a,,) = 2". So there
are n actions with first index i = 0 all costing v = 2° = 1,
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Figure 1: Enqueue and Dequeue times of variables for n = 3

n — 1 actions with first index ¢ = 1 and cost v = 2 and so
forth.

Let each action a;; = (pre,;,eff;;) have an empty pre-
condition pre;; = () and a single assign effect eff;; =
(v :==vj + 2") on variable v;. The additional action a,, has
an effect eff,, = (v,, := 2™). This way, each variable v; has
a dependency on all variables v; with higher index: v; < v;
iff i < j. All variables are initialized to v; — [0, 0]. The
idea of this construction is to have exactly one fact be de-
queued at each time step (cost) from 1 to 2"+! — 1. The
lower bound of all intervals remains at O for all variables,
and the upper bound of the altered variable is extended to
a value coinciding to the current cost. Initially, all actions
are applicable, and as such all of them enqueue their effect
facts with their respective costs. Note that all actions a;;
with the same first index i have the same effect v; — [0, 2]
as v; +— [0,0] for all j. Therefore, only one fact will be
dequeued for each variable.

We determine the number of required enqueue operations
enq inductively: action a,, has no dependencies and its ef-
fect (v, := 2") enqueues the fact v,, — [0,2"] with cost
v = 2" once: enq(v,) = 1. We will now show induc-
tively that enq(v;_1) = 2 - enq(v;). Whenever a fact re-
ferring to a variable v; is enqueued, so is a fact referring to
v;—1 by construction. Whenever an action achieves a new
value for higher-layer variable k& with ¢ < k, it will trig-
ger action a;y for v; and a(;_q) for v;_1. E.g. consider
the example depicted in Figure [T] for n = 3. Action ag
sets vz to [0, 8] and triggers agz on v, aiz on vy and ags3
on vy enabling the respective intervals to reach 12, 10 or 9
respectively. The second enqueue operation on v;_1 is trig-
gered by v; changing itself. Because of action a;_1);, vi—1
is not only enqueued at the same time as v;, but it is en-
queued again whenever v; is dequeued. The initial situation
is slightly different in that there are n actions enqueued for
each variable n instead of one. Save for the overhead of
R enqueue operations in the initially state, this already
sets an upper bound of enq(v;—1) = 2 - enq(v;) enqueue
operations for each variable. It remains to be shown that this
upper bound is actually reached. Independent of k, a;; costs
twice as much as a(;_1)x, and therefore, the effect triggered
by vx on v;—; will be dequeued before the effect triggered
on v;. Therefore, all changes triggered at enqueue time are
processed before v; is dequeued. We still have to ensure that

the facts triggered from v; at dequeue time are processed
before v; is enqueued again. E.g. in Figure [1] for v, we
have to ensure that the changes marked in blue fit into the
space marked by the blue double-arrow or that the actions
triggered by v3 marked in red fit into the region marked by
the red double-arrow. Changes in v;_; trigger changes in
v;—o and so on. The execution of the sequence of actions
A(i—1)(i)> - - - » 01 COStS ZZ:O 2% = 2¢ — 1 which is cheaper
than 2¢. Therefore, also the changes triggered at dequeue
time are processed before the variable is reenqueued, result-
ing in twice as many enqueue operations for v;_1.

The total number of enqueue operations is then
2?220 enqg(v;) = Y. 52" = 2" — 1 plus the overhead
of »—" enqueue operations in the initially state which is
exponential in the input size. O

Generalization of the Marking Method of /ipg:
The Target Value Explication Problem

In Section 3.4-3.5 of our paper (Aldinger and Nebel 2017)
we propose a generalization of the marking method of the
her heuristic (Hoffmann and Nebel 2001). In relaxed nu-
meric planning, the progression step of the heuristic cre-
ates a sequence of relaxed states with the property that the
first state contains degenerate intervals (the state for which
the heuristic is computed), the intervals in the sequence are
monotonically expanding for each variable (because of the
convex union) and the last state satisfies the goal condition.
For the planning graph approach, the state sequence corre-
sponds to the layers of the planning graph, while for a prior-
ity queue based approach it corresponds to the sequence ob-
tained from dequeuing new facts. Actions connect facts in
this state sequence. Depending on the fact selection strategy
these connections are not restricted to consecutive facts. The
intervals of each fact are determined by the convex union of
the fact interval from the previous state and all effect inter-
vals from incoming actions modifying the respective vari-
able. The cost of a fact is increased from one state to the
next iff the corresponding interval is extended. An example
of such a state sequence is depicted in Figure 2} Action a;
has an effect v1 += 2 and aq assigns v; := vg. The fact for
v In 89 is then the convex union of the interval [0, 2] of v;
in s and the effect of action ag: v; — [—1, 0] resulting in
82(1]1) = [0, 2] (] [—1,0} = [—1,2].

ag
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Figure 2: A state sequence produced by the progression phase

A marking of actions in such a sequence is a labeling pro-
cedure that assigns a label marked or not marked to each



action in each step. For the repetition relaxation, actions
are marked with a number instead: the repetitions count. A
simple checking procedure can verify whether such a mark-
ing corresponds to a relaxed plan: we progress the state se-
quence and assign new intervals to each variable where the
interval for each fact is now restricted to the convex union of
the interval from the previous layer and the effect intervals
from actions that are both marked and applicable (where in-
tervals are computed by repeating the actions effect accord-
ing to the repetitions count if appropriate). If a state satisfy-
ing the goal condition is reached by this state sequence the
marking is valid and corresponds to a relaxed plan. Note
that the intervals in this new state sequence obtained from
applying only marked actions are sub-intervals of the corre-
sponding states obtained from the progression phase.

A marking is optimal if it is valid and the cost of the cor-
responding plan (that is the sum of the costs of all marked
actions) is minimal among all valid markings.

Differences to the marking procedure from classical plan-
ning come from interval valued facts and actions which con-
nect relaxed states over several layers. As numeric actions
are non-idempotent, it is also not sufficient to apply actions
only once and as such, actions can have to be marked more
than once at different steps in the state sequence. For the
repetition relaxation, also the marking label is generalized
as actions are marked by assigning a repetition counter to
them. Nevertheless, finding an optimal marking is still in
NP.

The actions of an optimal relaxed plan might not be
present in the structure generated by the progression method.
Instead, we are interested in a marking so that the corre-
sponding plan has minimal cost regarding the structure ob-
tained from the progression search. In order to show that the
optimal marking cannot be found in polynomial time, we
consider the corresponding decision problem where a cost
bound on the plan is given in advance.

Theorem 2. Marking actions in an interval or repetition re-
laxed state sequence so that the corresponding interval re-
laxed plan is bounded by (3 is NP-complete.

Proof. NP-hardness of the marking problem for numeric
planning is evident it is a generalization of the hpr mark-
ing problem for classical planning. Reducing minimum set
cover to h™: the cost of an optimal relaxed plan, can there-
fore also be used to show NP-hardness of the generalized
numeric marking problem.

Membership in NP is shown by guessing a marking of ac-
tions. The plan cost bound (3 sets an upper bound on the
number of actions that can be applied in total: S divided
by the cost of the cheapest action | ——=——|. The mini-

acA v(a)
mum exists as action costs are required to be positive. This
number also ensures that the rational numbers on the interval
bounds can be represented in polynomial space.

For the repetition relaxation we also have to guess a num-
ber of repetitions for each action. The plan cost bound 3
also bounds the number of repetitions that can be chosen at
most for each action, namely L%J for each action a.

The checking procedure that verifies that a given marking

is indeed a relaxed plan is a simple progression scan that
is restricted to the marked actions. During each phase, all
marked actions are executed, unless they are not applicable
in which case the marking is either suboptimal or not a valid
relaxed plan. If the last state of the verification procedure
satisfies the goal condition, the marked sequence is indeed
a relaxed plan. The procedure runs in time polynomial in
L#J x [: the number of marked actions and the
acay(a)
length of the sequence [, thus demonstrating membership in
NP. O

Numeric constraints can often be satisfied by intervals
from previous states in the sequence that can be achieved
with lower cost. Also, for a state sequence obtained from a
planning graph based fact selection strategy, several actions
can affect the same fact, but not all of them extend the in-
terval in the intended direction. Therefore, we suggest that
marking a numeric fact includes choosing a farget value in
the respective interval, so that reaching the target value is
sufficient to satisfy the desired constraint. If several actions
rely on the same fact, several target values can be required
for one fact. However, this number can never exceed two:
one for increasing and one for decreasing the current value
of a variable. If several rarget values are greater (less) than
the current value, the greatest (smallest) among them should
be kept, as the other farget values will then be automatically
reached by the convex union.

This opens the challenge to select suitable rarget values.
Local target value constraints restrict the fact intervals to
feasible sub-intervals for a global target value optimization
problem. The local target value constraints determine fea-
sible sub-intervals for all facts that appear in preconditions
of numeric actions, so that the desired effect values can be
reached. The global target value optimization problem is
then the optimization problem that has to select target val-
ues within the feasible sub-intervals so that the correspond-
ing relaxed plan has minimal cost.

Target values are of great practical help for a regressive
marking procedure which has to select numeric facts that
do not have to be achieved completely. Additionally, rarget
values allow us to select an appropriate achieving action in
case several actions affect the same fact such in a state se-
quence obtained from a planning graph based fact selection
strategy.

Originally, we assumed that farget values would not only
be helpful to determine a marking regressively, but that it
would also be beneficial to prove NP-completeness of the
generalized marking method of hpg. During the refine-
ment of our proof sketch we realized it is more elegant to
first prove NP-completeness of the generalization of the hgp
marking method (Theorem [2)) and then show that the global
target value optimization problem is equivalent (Theorem][3).

Given a marking of actions, determining facts and feasi-
ble target values comes for free: the interval bounds of the
facts generated by the checking procedure can be used if the
respective interval is extended from one step to the next. In
case the application of an action extends both bounds of a
certain variable, we select two farget values instead.



Theorem 3. The global target value optimization problem
is NP-complete.

Proof. We show that given a marking of actions we can de-
termine farget values for all numeric facts and vice versa.
Thus, the global target value optimization problem is an-
other formulation of Theorem 2] which has already be shown
to be NP-complete.

=: Given a marking of actions in a relaxed state se-
quence, we determine a marking of facts and feasible tar-
get values as follows: For each marked action, we select
the bounding element of the bound which was extended as
optimal target value for the fact in the successor state. If
the marked action can extend both bounds of the interval,
we select two target values instead, one for each bounds.
If the same fact is assigned target values from several ac-
tions, only the greater of the target values for extending the
upper bound and the lower of the target values for extend-
ing the lower bound is used. In case a bound diverges to
infinity (which can only happen by division by an interval
containing zero), a sufficiently large number is used. Be-
cause of the convex union, all values in the fact intervals are
also achieved and yield the same fact progression as the one
obtained from applying all marked actions.

<: We can not only determine a marking of facts and
target values from a marking of facts and actions, but also
vice versa. Starting from the current state sg, we proceed the
state sequence and if a fact is assigned a target value which is
not supported by the current interval, we mark the cheapest
achieving action. O
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