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Abstract

We present new upper bounds for fundamental problems in multichannel wireless
networks. These bounds address the benefits of dynamic spectrum access, i.e., to
what extent multiple communication channels can be used to improve performance.
In more detail, we study a multichannel generalization of the standard graph-based
wireless model without collision detection, and assume the network topology satisfies
polynomially bounded independence.

Our core technical result is an algorithm that constructs a maximal independent

set (MIS) in O
(
log2 n

F
)

+ Õ(log n) rounds, in networks of size n with F channels, where

the Õ-notation hides polynomial factors in log log n.
Moreover, we use this MIS algorithm as a subroutine to build a constant-degree

connected dominating set in the same asymptotic time. Leveraging this structure, we

are able to solve global broadcast and leader election within O
(
D + log2 n

F
)

+ Õ(log n)
rounds, where D is the diameter of the graph, and k-message multi-message broadcast

in O
(
D+k+ log2 n

F
)

+ Õ(log n) rounds for unrestricted message size (with a slow down
of only a log factor on the k term under the assumption of restricted message size).
In all five cases above, we prove:

(i) our results hold with high probability (i.e., at least 1− 1
n );

(ii) our results are within polyloglog factors of the relevant lower bounds for multi-
channel networks; and

(iii) our results beat the relevant lower bounds for single channel networks.
These new (near) optimal algorithms significantly expand the number of problems now
known to be solvable faster in multichannel versus single channel wireless networks.
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1 Introduction

Modern wireless devices rarely operate on a fixed communication channel. It is more
common for them to use a wide swath of spectrum that has been subdivided into multiple
independent channels (e.g., [1, 7]). This reality inspires a compelling question: When and
how can we leverage the availability of multiple channels to improve the performance of
wireless algorithms?

One might hope that using F channels you can always achieve an F-times speed-up.
For distributed algorithms, however, this goal is complicated by two factors: (a) each
device can only use a single channel at a time; and (b) the size and density of the network
is often unknown a priori. (In fact, some well-known problems, such as multihop wake-
up, provably derive no benefit from multiple channels [12].) In this paper, we overcome
these challenges to significantly increase the corpus of algorithms known to solve problems
faster in multichannel versus single channel wireless networks. In more detail, we prove
new randomized upper bounds for the following fundamental problems in graphs satisfying
polynomial bounded independence (defined below):

(i) establishing a maximal independent set (MIS);
(ii) establishing a constant-degree connected dominating set (CDS);

(iii) broadcasting one message—or a set of messages—to every device in a network; and
(iv) electing a leader in a network.
For each of these problems, we give solutions that are within polyloglog factors of optimal
in the multichannel setting, and that are faster than their corresponding lower bounds in
single channel networks.

We argue that these results provide a powerful argument for wireless algorithm designers
to more aggressively embrace the availability of multiple channels to gain performance.

Results. We assume a multichannel generalization of the standard graph-based wireless
model [5, 9]. In each round, each node can choose a single channel to participate on from
among F ≥ 1 available channels. We further assume that the graph representing our
network topology satisfies polynomial bounded independence (the independence number
of a radius r neighborhood is bounded by f(r) for some polynomial f) [23, 27]. This
assumption generalizes a variety of attempts to model the topology of wireless networks,
including the widely used unit-disk graphs, quasi-unit-disk graphs, or, more generally,
unit-ball graphs where the underlying metric has bounded doubling dimension [27].

The primary technical result of the paper is an algorithm that constructs an MIS in

O
( log2 n
F
)

+ Õ(log n) rounds—where Õ hides polynomial factors in log log n—with high
probability1. This algorithm consists of two main pieces: a “decay filter” that reduces
the number of nodes competing in each “area” to O(polylog n), and a “herald filter” that
leverages multiple channels to efficiently further reduce the nodes down to a constant

1We use the phrase high probability to indicate a probability at least 1− 1
nc , for some arbitrary constant

c ≥ 1.
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number per area.
Much of the complexity resides in the herald filter, where we reduce the number of

contenders to join the MIS from O(polylog n) to O(1). Part of the complexity comes from
asynchrony: new arrivals and neighboring regions can force existing nodes to “restart,”
preventing progress toward the MIS. Another part of the complexity comes from the fact
that randomized symmetry breaking works well over large populations, but less predictably
as the number of participants gets small.

To put this result in context, in the single channel model, building an MIS requires
Θ(log2 n) time [12, 19, 21, 25]. Based on the lower bound techniques developed in [11, 12,
14, 21], we show in Section 4 that in bounded independence graphs (and even in unit-disk

graphs) any MIS algorithm requires at least Ω
( log2 n
F + log n

)
rounds in a network with F

channels. Our algorithm matches this multichannel lower bound up to polyloglog factors
and beats the single channel lower bound. The lower bound also implies that even if the
number of channels is arbitrarily large, solving the MIS problem still requires at least
Ω(log n) rounds, and our upper bound achieves almost the same time with just Θ(log n)
many channels.

Having developed an MIS algorithm, we use it as a subroutine to build a constant-

degree CDS, with high probability, also in O
( log2 n
F
)

+ Õ(log n) rounds. The key challenge
here is to efficiently—i.e., in o(log2 n) time—identify short paths between nearby MIS
nodes, even while the MIS subroutine is ongoing. We then leverage the overlay provided
by our CDS algorithm to solve global broadcast and leader election (with synchronous

starts) in O
(
D + log2 n

F
)

+ Õ(log n) rounds, and k-message multi-message broadcast in

O
(
D+k+ log2 n

F
)

+ Õ(log n) rounds for unrestricted message size (with a slow down of only
a log factor on the k term under the assumption of restricted message size). These bounds

(nearly) match the relevant Ω
(
D + log2 n

F
)

bound for multichannel networks [17], and beat
the relevant Ω(D + log2 n) lower bound for single channel networks [3].

Related Work. There has been much research on algorithms for graph-based single
channel wireless network models, beginning with Chlamtac and Kutten [9] in the central-
ized setting and Bar-Yehuda et al. [5] in the distributed setting. The problem of finding an
MIS in a distributed fashion has been studied extensively for a standard message passing
model (i.e., without collisions). On general network topologies, an MIS can be built in
O
(

min
{

log n,
√

log n log ∆
} )

, where ∆ is the largest degree of the network graph [2,6,24].
For bounded independence graphs, this is improved to O(log∗ n) [28]. For single-channel
radio networks (i.e., with collisions), without collision detection that satisfy the unit disk
graph property, it has been shown that O(log2 n) rounds are sufficient [25]. Using a reduc-
tion from the single-hop wake-up problem, this bound was shown tight [12,19,21,25].

To our knowledge, the use of a connected dominating set (CDS) as a wireless network
backbone was first described in [18]. It is well-known (and already described in [18] for
the case of unit disk graphs) that a CDS can be constructed by first computing a small
dominating set (in the case of bounded independence graphs, an MIS provides such a small
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dominating set), and then connecting the nodes of the dominating set through 2 and 3 hop
paths. In a bounded independence graph, connecting all MIS nodes at distance at most 3
by a short path leads to a CDS where the graph induced by the CDS is connected and has
bounded degree. The MIS algorithm of [25] combined with the CDS algorithm of [8] (which
assumes an MIS as a precondition) provides a constant-degree CDS in O(log2 n) rounds
in the radio network model with synchronous starts (i.e., where all nodes start during the
same round).2

The study of algorithms for multichannel wireless networks is more recent. Initially,
much of the focus in multichannel networks was providing increased fault-tolerance: even
if some of the channels were faulty, the computation would proceed. This basic model of
unreliable multichannel wireless communication, often called t-disrupted, was introduced
in [15], and has since been well-studied; e.g., [13–16,20,26,29,30].

We previously tackled the problem of leader election in single-hop networks (i.e., the

diameter is 1) [11], where we solved the problem in O
( log2 n
F + log n

)
rounds. These tech-

niques did not directly translate to multihop networks. We also have studied the problem
of broadcast in multihop networks [17]. In this case, we assumed that nodes had ac-
cess to collision detection, showing how to leverage this information to solve broadcast in
O
((
D + log n

)(
logF + logn

F
))

. For F = log n, this yields results similar to this paper,

i.e., O(D) + Õ(log n). The results are hard to compare, however, as [17] assumes collision
detection (which we do not), but we assume bounded independence (which [17] does not).

Finally, we have studied the problem of wake-up and approximating a minimum domi-
nating set (MDS) in a multihop network with a topology that satisfies a clique decomposi-
tion assumption [12]. For the MDS problem, we achieved a constant-factor approximation

of an MDS, in expectation, requiring O
( log2 n
F
)

+ Õ(log n) rounds. We found the technique
could not easily be extended to achieve the strict independence of an MIS (with high prob-
ability) or tolerate the more general bounded independence assumption (instead of a clique
decomposition assumption).

2 Preliminaries

Radio Network Model. We consider a multichannel variant of the standard graph-
based radio network model [5]. The network is modeled as an n-node graph G = (V,E).
Each node knows n or a polynomial upper bound on n. There are F communication
channels. Time is divided into synchronized slots, i.e., rounds. For the purpose of analysis,
we imagine a global round numbering, but nodes do not have access to this global time.
In each round, each node can choose one of the F channels to operate on; it can either
transmit or listen on the channel. A node u that listens on a channel C receives a message
from a neighbor v if and only if node v is transmitting on C and no other neighbor of u

2The MIS result of [25] does not require the synchronous start property, but the CDS piece from [8]
does.
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is transmitting on C. If two or more neighbors of u transmit on C, or if no neighbor of u
transmits on C, then u receives silence. That is, we assume there is no collision detection
available. A node that transmits does not receive anything. Notably, a node that operates
on channel C in a given round learns nothing about events on channels other than C in
that round.

Notation. For a subset of nodes S ⊆ G, we use Nd
G(S) to denote the set {u | ∃v ∈

S, distG(u, v) ≤ d}, where distG(u, v) is the shortest distance between u and v in graph
G. When |S| = 1, e.g., S = {v}, we use Nd

G(v) to mean Nd
G({v}). We use NG(v) to denote

the neighbors of v, i.e., NG(v) = N1
G(v) \ {v}. When clear from the context, we omit the

subscript G. In later sections, we describe algorithms in which nodes can be in various
states, e.g.: A, H′, H, L′, L, M, E. Where appropriate, we slightly abuse notation and
use the state names to denote the set of nodes in a given state, e.g., A to denote the set
{v ∈ V : v is in state A}. We sometimes study Nd(u)∩A and write Nd

A(u). When referring
to a local variable X of a node u, we write X(u). If the round number is not clear from
the context, we denote X(u) in round r as X(u, r).

Bounded Independence. We assume that the network graph G is a bounded inde-
pendence graph as introduced and described in [23, 27]. Formally, any independent set
S ⊆ Nd

G(v) for any node v has size at most α(d), where α(d) is a polynomial function in
d and (in particular) independent of n. Hence, any subgraph induced by a subset of a
neighborhood Nd

G(v) for d = O(1) has only constant size independent sets.

Probability Notation. Consider an event A, a constant c, and a variable k. If
P(A) ≥ 1− e−ck, then we say that A happens with very high probability with regard to k
(w.v.h.p.(k)). If P(A) ≥ 1−k−c, then we sayA happens with high probability with regard to
k (w.h.p.(k)), and if A happens w.h.p.(n), then we simply say A happens with high prob-
ability (w.h.p.). Finally, w.c.p. abbreviates ‘with constant probability’.

Number of Channels. We assume ω(1) channels are available; otherwise there are
existing algorithms that solve the problem in the same asymptotic time frame. If ω(log n)
channels are available, we restrict the usage to Θ(log n), as there is no benefit from using

more—in Section 4, we show that computing an MIS requires Ω
( log2 n
F + log n

)
rounds.

Solely for ease of exposition, we assume a minimum number of Ω(log log n) channels for
all descriptions and proofs in this paper; this is not a requirement for the algorithm to
work. We explain in Appendix B how to adapt our algorithms to work in a setting with
o(log log n) channels.

3 Problem Statement

We study randomized algorithms for the following problems, with high probability:

Maximal Independent Set. We say that an algorithm solves MIS in time T , if the
following three properties hold:
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(P1) Each node v that wakes up in round r declares itself as either dominating or dominated
by round r′ ∈ [r, r + T ] and this decision is permanent.

(P2) For each round r and node v, if v is dominated in round r, then v has at least one
dominating neighbor in that round.

(P3) For each round r and node v, if v is dominating in round r, then v does not have any
neighboring dominating node in that round.

Connected Dominating Set. We say that an algorithm solves (constant-degree) CDS
in time T , if the following four properties hold:
(P1) Each node v that wakes up in round r declares itself as either dominating or dominated

by round r′ ∈ [r, r + T ] and this decision is permanent.
(P2) For each round r and node v, if v is dominated in round r, then v has at least one

dominating neighbor in round r.
(P3) For each round r and node v, if v is dominating in round r, then v has at most O(1)

dominating neighbors in that round.
(P4) For each round r and each connected component C in the graph induced by nodes

awake in round r− T , the dominating nodes in C form a connected subgraph within
C.

Other Problems. We also consider global broadcast, where a node starts with a
message, and multi-message broadcast, where k nodes start with a message; in both
cases the algorithm succeeds when every node in the network has received the message(s).
Finally, we consider leader election, which terminates when exactly one node has declared
itself the leader (and no future nodes declare themselves the leader).

4 Lower Bound

In this section we present a lower bound for solving MIS in a radio network that satisfies
the underlying model of this paper as presented in Section 2, i.e., collisions are assumed as
well as no collision detection. This proves the (near) optimality of the MIS algorithm we
present in Sections 5, 6 and 7.

Theorem 4.1. Any algorithm that solves the MIS problem in a radio network with F
channels, and that has at least a constant success probability requires at least Ω

( log2 n
F +log n

)
rounds.

Proof. We show that the lower bound even applies in a single-hop network, i.e., if the
network graph G is the complete graph Kn. In this case, the problem of computing an
MIS is equivalent to the leader election problem. We have shown in [11] that for a leader
election protocol that is successful with probability 1− ε it holds that with probability at
least 1 − 3ε, at least one message is transmitted successfully. We can therefore obtain a
lower bound on the MIS problem by lower bounding the number of rounds that are needed
until in a complete graph at least some node successfully receives a message from another
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node. In the single channel scenario, this problem is known as the wake-up problem (see
e.g., [21]).

Throughout the proof, we assume that every node chooses an ID independently and
uniformly at random from a large enough domain so that w.h.p. IDs are unique. Note that
picking IDs from

{
1, . . . , n3

}
suffices. As nodes pick IDs independently, they also behave

independently during the protocol (as long as no message is received). Note also that since
n only appears logarithmically in the lower bounds, this is equivalent to assuming that
nodes are labeled with IDs 1, . . . , n and n1 1

3 nodes are randomly picked to be woken up by
the adversary.

We first show that it is sufficient to prove the following weaker lower bound: Solving
the problem with success probability 1− ε requires at least

Ω

(
log n

F
· log

1

ε
+ log

1

ε

)
rounds. (1)

Thus assume that this weaker bound holds. As n only appears in the logarithm, the
bound is also true if there are only say

√
n nodes. Thus consider a network that consists

of
√
n (independent) cliques of size

√
n. Solving the MIS problem means that we have

to solve leader election for each of these
√
n instances and since we assume that IDs are

picked independently for each node, the (probabilistic) executions of the
√
n leader election

instances are also independent. If each of the
√
n instances has failure probability δ > 0,

at least one of the instances then fails with probability at least 1− (1− δ)
√
n. To make this

constant, we have to choose δ = 1
Ω(
√
n)

and thus the claimed lower bound for MIS follows.

Thus it now suffices to show that this weaker bound holds. For the Ω
( logn
F log 1

ε

)
part

of the lower bound in (1), we use a reduction from the single channel problem to the

multichannel problem to show that at least Ω
( log2(n)
F

)
rounds are needed until at least

one message is received successfully. It is known that solving the wake-up problem with
success probability 1 − ε requires at least Ω

(
log(n) log

(
1
ε

))
rounds on a single channel

[12,19,21]. The lower bound of [12,19,21] only uses asynchronous wake-up in a weak sense,
in particular the bound does also hold if nodes are woken up synchronously. Thus, at time
0, let an adversary wake up a subset of the nodes and no other nodes are woken up until
(after Ω

(
log(n) log

(
1
ε

))
rounds) the first message is successfully received. All nodes that

participate in the wake-up protocol are therefore synchronized. This allows to simulate
F channels in F rounds on a single channel. Formally, a multichannel protocol is turned
into a single channel algorithm as follows. Every round of the protocol with F channels
is broken into a block of F consecutive rounds in the single channel algorithm. Round i
of the block is used to do all the communication that uses channel i in the multichannel
protocol. The reduction therefore immediately gives the first term of the lower bound in
(1).

To show a lower bound of Ω
(

log 1
ε

)
, consider the leader election problem in a network

consisting of only two nodes u and v, connected by an edge {u, v}. In principle, it would
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be possible to use similar techniques as in the lower bound of [12]. However since there are
only 2 nodes, there also is a simpler argument. For rounds i = 1, 2, . . . , let Si be the event
that there is a successful message transmission between u and v. Also, let Ui, Vi ∈ {0, 1} be
random variables that described the listen/transmit behavior of u and v in round i—note
that we do not care about their channel selections. We assume that Ui = 1 if u transmits
in round i and that Ui = 0 otherwise. The random variable Vi is defined accordingly for
node v. Recall that because u and v pick their IDs independently, as long as no node
receives a message, they also behave independently and therefore the following hold. For
any specific t-round-listen/transmit-pattern we have p = {0, 1}t,

P

(
Ut+1 = 1

∣∣∣(U1, . . . , Ut) = p,
t⋂
i=1

Si

)
= P

(
Vt+1 = 1

∣∣∣(V1, . . . , Vt) = p,
t⋂
i=1

Si

)
.

We therefore get that

q := P

(
Ut+1 = 1

∣∣∣ t⋂
i=1

Si

)

=
∑

p∈{0,1}t
P

(
Ut+1 = 1

∣∣∣(U1, . . . , Ut) = p,
t⋂
i=1

Si

)
·P

(
(U1, . . . , Ut) = p

∣∣∣ t⋂
i=1

Si

)

=
∑

p∈{0,1}t
P

(
Vt+1 = 1

∣∣∣(V1, . . . , Vt) = p,

t⋂
i=1

Si

)
·P

(
(V1, . . . , Vt) = p

∣∣∣ t⋂
i=1

Si

)

= P

(
Vt+1 = 1

∣∣∣ t⋂
i=1

Si

)
.

(2)

Note that with one channel event Si occurs if and only if Ui 6= Vi—if more than one channel
exists, this is a necessary requirement. For t ≥ 1, we can therefore bound

P

(
St+1

∣∣∣ t⋂
i=1

Si

)
≤ 2q(1− q) ≤ 1

2
.

After t rounds, the success probability can therefore not be better than 1 − 2−t and thus
for a success probability of 1− ε, we need Ω

(
log 1

ε

)
rounds.

5 Overview of the MIS Algorithm

Algorithm Outline. Our algorithm consists of two main building blocks: the decay
filter and the herald filter. The decay filter is used to reduce the maximum degree of the
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communication graph to O(polylog n). The herald filter assumes that the maximum degree
is bounded accordingly and establishes an MIS in this setting.

The flow of the algorithm is as follows. Each node, on activation, starts in the decay
filter. As time passes, some of the nodes move from the decay filter to the herald filter.
Nodes exit the herald filter when either they have joined the MIS and have status domi-
nating, or when they have an MIS neighbor and are thus dominated. In order to analyze
the time complexity of our algorithm, we bound the time each node spends in each of the
filters.

We note that nodes do not move backward in this flow. The dominating and dominated
statuses are permanent; a node that is in the herald filter does not go back to the decay
filter. However, a node u that is in the decay filter might skip the herald filter and directly
become dominated if u receives a message from a dominating neighbor node v. Also, a
node that has made progress in one of the filters can be forced to restart at the beginning
of its current filter.

A node halts as soon as it discovers that it is dominated. On the other hand, a
dominating node v cannot halt: it continues transmitting its status to its neighbors every
so often, ensuring that each neighbor w that awakes at a later time becomes dominated.

Filter Guarantees. We now present the guarantees of both filters. We later discuss how
the filters are implemented and prove the specified guarantees. The first property holds
for all components of the algorithm, and acts in parallel with the other filter guarantees.
It plays an important role in combining the filters.

(G1) For each node u, if u is awake in round r and it has a dominating neighbor v in that
round, then w.h.p. node u becomes dominated by round r′ = r +O(log n).

Implementation is straightforward: each node u that does not have its final status
listens to one of a constant number of channels, w.c.p., every O(1) rounds. Each node
that is dominating periodically transmits on those channels, w.c.p., every O(1) rounds. If
u receives a message from a dominating neighbor, then u becomes dominated. Since each
node can have at most α(1) MIS neighbors, applying Chernoff bound gives us guarantee
(G1). We show later that both filters satisfy this guarantee.

The guarantees that we get from the decay filter are as follows:

(G2) W.h.p., for each node v and each round r, at most O(log n) nodes in N1
G(v) exit the

decay filter in round r to enter the herald filter. Each node v that enters the herald
filter has spent Ω(log n) rounds in the decay filter, long enough to become dominated
if v already had a dominating neighbor after waking up.

(G3) W.h.p., for each node v that is in the decay filter in round r, by round r′ = r +

O
( log2 n
F +log n

)
, either v is dominated, in which case it has a dominating neighbor, or

at least one node in N1
G(v) exits the decay filter and enters the herald filter between

rounds r and r′.

The guarantees that we get from herald filter are as follows:
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(G4) W.h.p., for each node v that is in the herald filter in round r, by round r′ =
r + Õ(log n), v is dominating or dominated. In the latter case, v has a dominating
neighbor.

(G5) W.h.p., in any round r, the set of dominating nodes is an independent set.

Note that (G2) and (G4) together provide that, w.h.p., the maximum degree in the graph
induced by undecided nodes in the herald filter is bounded by some ∆H = O(polylog n).

We will describe the algorithm and prove guarantees (G1)–(G5) in the following two
sections. Before doing so, we state our main theorem (for a detailed proof we refer to [10]).

Theorem 5.1. W.h.p., an algorithm satisfying (G1)–(G5) solves the MIS problem in time

O
( log2 n
F
)

+ Õ(log n).

Proof. We first show that for each node v that is awake in round r, there is a round

r′ = r + O
( log2 n
F
)

+ Õ(log n) such that, by the end of round r′, either v is dominating or
dominated, or at least one ‘new’ node w ∈ N2

G(v) has become dominating. Here ‘new’
means that w was not dominating in round r.

We first wait until round r′ such that for all nodes u ∈ N2
G(v) that are dominating

in round r, all neighbors w of u that are awake in round r are dominated by round r′.
By guarantee (G1), it holds that r′ = r + O(log n). Next (G3) implies that by round

r′′ = r′ +O
( log2 n
F + log n

)
, either v is dominating or dominated, or some node u ∈ N1

G(v)

is in herald filter. From guarantee (G4), we then get that by round r′′′ = r′′ + Õ(log n),
u is either dominating or dominated. If u is dominating, it is a ‘new’ dominating node in
N1
G(v) ⊆ N2

G(v). If u is dominated, we know that u has a neighbor w that is dominating.
We know that w ∈ N2

G(v) has not been dominating in round r, as otherwise, was either
dominated before or (G2) implies that it does not make it out of decay filter.

It remains to show that this also implies that the algorithm solves the MIS problem
in the required time. Property (P2) follows from guarantees (G3) and (G4). Property
(P3) follows immediately from (G5). To prove property (P1), consider a node v that is
awake in round r. Note that the number of different nodes in N2

G(v) that can become
dominating is at most α(2) due to property (G5). By the above argument, as long as v is
not dominating or dominated, w.h.p., we get a new dominating node in N2

G(v) once every

at most O
( log2 n
F
)

+ Õ(log n) rounds.

6 Decay Filter

The decay filter is a slightly modified version of the active state of the Active Wake-Up
Algorithm in [12]. In essence, the decay filter is a backoff style protocol in which nodes
broadcast with exponentially increasing probabilities. The main difference between the
decay filter here and the one in [12] is that the graph model of the present paper is more
general. Based on a weighted version of Turán’s theorem that is proven in Appendix A, it
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is possible to generalize the analysis from bounded-degree clique partition assumption to
general bounded independence graphs.

A pseudo-code is presented in Algorithm 1.

Algorithm description. The decay filter uses Θ(F) channels, divided into two sets:

(i) the decay channels D1, . . . ,DF, where F = Θ(F); and
(ii) the report channels R1, . . . ,R3α(1).

A node v in the decay filter proceeds as follows. First, v spends Θ(log n) rounds listening
to one of the report channels, chosen at random in each round. If it hears from an MIS
node, it halts and becomes dominated.

Otherwise, node v proceeds through log n phases. Each phase consists of Θ
( logn

F

)
=

Θ
( logn
F
)

rounds, except for the last phase, which consists of Θ(log n) rounds.
In each round of each phase, each node listens to one of the report channels with

probability 1
2 . If node u is not listening to a report channel and it is in phase j, then u

chooses uniformly at random one of the decay channels D1, . . . ,DF. Then, with probability
2j

4n , u transmits on this selected channel and otherwise u listens to this selected channel.
Thus, transmission probabilities are exponentially increasing over the phases, going from
1

2n to 1
4 .

If a node u transmits in a round, then u immediately exits the decay filter and enters
the herald filter. Moreover, if a node u receives a message on some channel Dm, then u gets
knocked out and it restarts the decay filter. If u passes through all the phases without ever
transmitting, then u moves to the herald filter. As a side note, notice that if the constants
in the asymptotic notation of Algorithm 1 are chosen large enough, with high probability,
this last case never happens, i.e., nodes will enter herald filter only through Algorithm 1.

7 Herald Filter

In this section, we present the herald filter. Recall that, to simplify explanations and ease
understanding, we assume Ω(log log n) channels to be available.

The herald filter assumes that in the subgraph induced on the nodes in the filter the
degree of each node is always bounded by ∆H = O(polylog n). Given this assumption, the
objective of the filter is to find an MIS.

7.1 Algorithm Outline

Pseudo-code for the herald filter is given by Algorithm 2.
During the algorithm, each node is in one of 7 states: the active state A, the handshake

states H′ and L′, the red-blue game states H and L, the MIS state M or the exclusion state
E. State A (active) indicates the initial state; state M indicates that the node is in the
MIS (permanently); and E (eliminated) indicates nodes that know of a neighboring MIS
node. States L′ (leader candidate) and L (leader) are temporary states through which a

11



Algorithm 1 Decay Filter, run @ process v
Channels: R1, . . . ,R3α(1) – report, D1, . . . ,DF – decay

1: for i := 1 to Θ(logn) do . initial waiting phase
2: listen to channel Rk, k chosen uniformly at random from {1, . . . , 3α(1)}
3: if M ∈ msg then
4: state← E

5: phase-length← Θ
( logn
F
)

6: for j := 1 to logn do . main body
7: if j = logn then
8: phase-length← Θ(logn)

9: for k := 1 to phase-length do
10: pick uniformly at random: l ∈ {1, . . . , 3α(1)}, m ∈ {1, . . . ,F}, q ∈ [0, 1)
11: switch q do
12: case q ∈ [0, 2j−logn−2)
13: send ID on channel Dm
14: exit decay filter and enter herald filter . move to herald filter

15: case q ∈ [2j−logn−2, 1
2

)
16: listen on channel Dm
17: if msg 6= ∅ then
18: restart decay filter . get knocked out

19: case q ∈ [ 1
2
, 1)

20: listen on channel Rl
21: if M ∈ msg then
22: state← E
23: exit decay filter and enter herald filter

node v passes to get to state M, while states H′ (herald candidate) and H (herald) are
accompanying temporary states through which a node u passes to help a neighboring node
v to pass through states L′ and L to get to state M.

In general, a node v can go to state M (i.e., join the MIS) in two ways: (1) either v
does not receive any message for a long time and it joins the MIS assuming it is alone, or
(2) v joins the MIS with the help of one of its neighbors u. In the latter case, in order to
get to state M, node v goes through states L′ and L, while u goes through states H′ and H
simultaneously. During these states, u helps node v to make sure that no other neighbor
of v is trying to join MIS.

Until the state of a node v in herald filter is determined (i.e., until it moves to M or
E), it maintains a counter lonely(v) that measures for how long v has not heard from any
neighbors; in addition, it maintains a parameter γ(v), called the activity level, which is
always in

[
1

4∆H
, 1

2

]
and governs the behavior of v in state A. By definition, we assume that

for nodes v in states M and E and for nodes v that are not presently in the herald filter,
we have γ(v) = 0.

We divide the filter into 4 parts, depending on whether:

(i) the node is in the active state A (Section 7.2),
(ii) the handshake states H′ and L′ (Section 7.3),

(iii) the red-blue game states H and L (Section 7.4), or

12



Algorithm 2 Herald Filter — run at process v
States: A – active, L/L′ – leader (candidate), H/H′ – herald (candidate)
Channels: A1, . . . ,AnA – herald election, H – handshake, R1, . . . ,R3α(1)– report,

G – red-blue game, S1, . . . ,SnS – loneliness support
Input: εγ , ∆H, π`, α, n, nA, nS , τlonely, τred-blue

1: count← 0; lonely← 0; meet←⊥; state← A; enforce← false; γ ← 1
4∆H

;

2: while state 6= E do
3: count← count + 1;
4: γ ← min

{
γ(1 + εγ), 1

2

}
5: lonely← lonely + 1
6: uniformly at random pick q ∈ [0, 1) and k ∈ {1, . . . , 3α(1)}
7: pick an i ∈ {1, . . . , nA,⊥} randomly with distribution P(i =⊥) = 2−nA and P(i = j) = 2−j

8: switch state do
9: case A
10: run Active State
11: case H′ or L′
12: run the Handshake
13: case H or L
14: run the Red-Blue Game
15: case M
16: run MIS state
17: endWhile

(iv) the MIS state M (Section 7.5).

7.2 Active State

Pseudo-code for the active state protocol is given by Algorithm 3.
Consider a node v that is in state A in round r. In the active state, we use O(log log n)

channels, divided into three sets:

(i) the active channels {A1, . . . ,AnA},
(ii) the lonely channels {S1, . . . ,SnS}, and

(iii) the report channels {R1, . . . ,R3α(1)} (see Section 6),

where nA, nS = O(log ∆H) = O(log log n). In round r, node v does one of the following
three things, with probability γ(v) for (a), probability 0.9 − γ(v) for (b), and probability
0.1 for (c):

(a) Node v picks an active channel using an exponential distribution, choosing channel
Aj with probability 2−j . Then, with a fixed constant probability π` (chosen in the
analysis), v listens to that channel, and with probability 1 − π`, v transmits its ID
on that channel.

(b) Node v listens to one of the 3α(1) report channels chosen uniformly at random.
(c) Node v runs a protocol that we call the loneliness support block, which we explain

later in this subsection.

In (a), if v transmits on a channel Ai in state A, then v goes to state L′, attempting to
become a leader. On the other hand, if v listens and receives a message from a node u,

13



Algorithm 3 Active State
1: if i =⊥ then q = 1

2: switch q do
3: case q ∈ [0, π`γ)
4: listen on Ai
5: if msg 6= ∅ then
6: IDleader ← msg.ID; state← H′; count← 0; handshake← succ; lonely← 0

7: case q ∈ [π`γ, γ)
8: send (ID) on Ai
9: state← L′; count← 0; handshake← succ;

10: case q ∈ [γ, 0.9)
11: listen on Rk
12: if msg.state = M then
13: state← E
14: case q ∈ [0.9, 1] . loneliness support block
15: pick j ∈ {1, 2, . . . , nS} uniformly at random
16: with probability 2−j do
17: send (ID) on channel Sj
18: otherwise
19: listen to channel Sj
20: if msg 6= ∅ then
21: lonely← 0

22: if lonely > τlonely = Θ(logn · log logn) then
23: state← M

then v goes to state H′ (while u moves to state L′). In that case node v will try to help u
to become a leader and join the MIS. In (b), if v hears an ID with status M on a report
channel, then v is dominated by an MIS node and enters state E (eliminated).

Loneliness Support Block. Each node v maintains a counter lonely, to keep track
of how long it has been in the herald filter without receiving any messages. Whenever
v receives a message from a neighbor (anywhere in the herald filter), it resets the lonely
counter. If lonely exceeds a threshold τlonely = Θ(log n log logn), then node v ‘assumes’
that it is isolated (i.e., that it does not have any neighbor in the herald filter). In this
case, v joins the MIS and moves to state M. Node v may in fact not be isolated, since a
neighbor can show up later. However, we show in Lemma 8.15 that, w.h.p., this is in fact
safe.

Every time v executes the loneliness support block, it picks a channel Sj uniformly at
random from the lonely channels. Then v transmits on channel Sj with probability 2−j ;
otherwise, it listens to channel Sj . If v receives a message, it resets its lonely counter to
zero.

Activity Level Adjustment. Now we explain the adjustment of γ(w). When w enters
the herald filter, γ(w) is 1

4∆H
. The value of γ(w) is gradually increased by a small constant

factor (1+εγ) every round, until it reaches the maximal possible value of 1
2 after O(log log n)

rounds. The intuitive idea behind this activity level is as follows. Because of nodes waking
up asynchronously and the fact that nodes exit the decay filter and enter the herald filter
in an asynchronous manner, we need to deal with an undesirable fact: the transmission
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Figure 1: Handshakes between a pair of a leader candidate v and a herald candidate u

of the new nodes that enter the herald filter might affect the MIS election process which
is going on among the nodes that entered the herald filter a while before that. With the
gradual change in the activity level γ(w), we can control this undesired effect and keep it
below a tolerable level.

Thus, on first entering the herald filter, a node listens most of the time, but eventually,
after some O(log log n) steps, it spends a constant fraction of its time using the active
channels to try to become a leader or a herald.

7.3 The Handshake

Pseudo-code for the handshake protocol is given by Algorithm 4.
Consider a node h that just moved from state A to state H′ when it received a message

from a node `, that has also just entered state L′. Then, h and ` perform a 6-round
handshake on a designated handshake channel H. If this handshake succeeds, then node h
moves to state H and ` moves to state L. Otherwise, both return to state A.

The handshake proceeds as follows: In rounds 1 and 2, h transmits the ID of ` on H,
and ` listens. If ` receives both of these messages successfully (we show later that it can
not receive those messages from a different node h′), then in rounds 3 and 4, ` transmits
its ID on H, and h listens. In addition, ` transmits a meeting channel, i.e., a randomly
chosen report channel, which is used later in the red-blue game (see Section 7.4). Finally,
assuming that these messages are received successfully by h, then in rounds 5 and 6, h
again transmits the ID of ` on H and ` listens. If in any of these rounds, either of these
nodes does not receive the message that it was supposed to receive, then it considers the
handshake failed and returns to state A.

Each of the 3 transmissions in the handshake is repeated twice in order to synchronize
properly with the red-blue game and the nodes in the MIS. Nodes in these later states
broadcast in every other round. By requiring two consecutive successful rounds of the
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Algorithm 4 The Handshake
1: switch state do
2: case H′
3: switch count do
4: case 1, 2, 5, 6
5: Send IDleader on H

6: case 3, 4
7: Listen on H
8: if msg = ∅ then
9: handshake← fail
10: else
11: meet← msg.[2]

12: if handshake = fail then
13: count← 0, state← A
14: if count = 6 then
15: count← 0, state← H; game← succ

16: case L′
17: switch count do
18: case 1, 2, 5, 6
19: Listen on H
20: if msg = ∅ then
21: handshake← fail

22: case 3, 4
23: meet← k
24: Send (ID,meet) on H

25: if handshake = fail then
26: count← 0, state← A
27: if count = 6 then
28: count← 0, state← L; game← succ

handshake, we can be sure that there is no concurrent red-blue game or neighboring MIS
node.

Note that it is possible for ` to consider the handshake failed due to not receiving a
message in round 5 or 6, while h assumes that the handshake was performed successfully.
This situation is detected by h in the first 6 rounds of the red-blue game.

It is easy to see that one of the necessary conditions for a handshake between some
v ∈ L′ and u ∈ H′ to be successful is that h must be the only herald candidate trying to
perform a handshake with ` at that time. Hence, the nodes that enter states H and L can
be viewed as leader-herald pairs.

7.4 The Red-Blue Game

Ideally, we would like the leaders to form an independent set (and to also be independent
of nodes in M). This would allow us to send the leaders directly to the MIS. However, this
is not always the case as multiple leaders can be adjacent. The goal of the red-blue game
is to detect such bad leaders (i.e., adjacent leaders) and knock them out, back to state A,
along with their heralds.

For this purpose, we use a simple algorithm which we call the red-blue game. The
red-blue game uses a designated channel G, along with the handshake channel H and the
report channels.

Pseudo-code for the red-blue game protocol is given by Algorithm 5.
A single red-blue game is a 6-round protocol that is executed by a leader-herald pair

(`, h). During each game, it is possible that the pair is knocked out, meaning that both

16



nodes go back to state A. If the pair finishes Θ(log n) red-blue games without getting
knocked out, then ` assumes that it does not have an adjacent leader and joins the MIS.

The 6 rounds of a red-blue game are as follows: In rounds 1, 3 and 5 of the game,
both ` and h transmit on the handshake channel H. These transmissions block channel H
so that adjacent nodes cannot perform a successful handshake and thus, no new adjacent
leader-herald pair can be created until either ` joins the MIS or the pair is knocked out.

The main rounds of the game are rounds 2 and 4. In both rounds, h broadcasts `’s
ID on channel G. At the beginning of the 6-round protocol, ` picks a random color in the
set {red, blue} . In round 2, if ` chose red, then it transmits its ID on channel G, and if it
chose blue, it listens to G. In round 4, the behavior is reversed: ` listens if it chose red and
it transmits if it chose blue.

Each time ` is listening to channel G, by default, it should receive the message of h. If `
does not receive that message, it means that another node is also transmitting on channel
G—either a leader, another herald or an MIS node. If this happens, ` gets knocked out.

In round 6, ` transmits on the meeting channel Rmeet, while h listens on it (if this is
the first red-blue game, then Rmeet was chosen randomly from the report channels during
the handshake phase and transmitted from ` to h). The content of the sent message
is whether the red-blue game succeeded (i.e., whether ` detected any collisions) and the
meeting channel for the next red-blue game chosen uniformly at random among the report
channels. If h does not receive a message from ` indicating that the game succeeded, then
h gets knocked out. (Notice that h may not receive such a message due to a collision, in
which case ` gets knocked out in the next red-blue game when it fails to receive a message
from h.) Note that the nodes that are knocked out go back to state A only after they have
finished the 6 rounds of their red-blue game.

The objective of the even rounds is that if two leaders are adjacent and act syn-
chronously (round-wise), then with probability at least 1

2 , both leaders get knocked out.
This is because if both leaders choose different colors red and blue, then they fail to receive
the message from their respective heralds in rounds 2 and 4. Thus, if a leader-herald pair
passes the red-blue game O(log n) times, then, w.h.p., there is no synchronized neighboring
leader.

In the analysis, we show that because of the handshake rules, there are only very few
configurations for two leader-herald pairs to be adjacent. Basically either the two leaders
or the two heralds neighbor each other and operate synchronously, or if the leader of one
and the herald of another pair are neighboring, then their starts of the red-blue games are
shifted by exactly 2 rounds. When combined with the properties of the red-blue game, this
ensures that only one leader moves on to the MIS.

7.5 The MIS State

Pseudo-code for the MIS state protocol is given by Algorithm 6.
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Algorithm 5 The Red-Blue Game
1: switch state do
2: case H
3: switch count do
4: case 1, 3, 5 mod 6 . block H
5: Send (state, IDleader) on H

6: case 2 mod 6 . help leader with game

7: Send (state, IDleader) on G

8: case 4 mod 6 . help leader with game

9: Send (state, IDleader) on G

10: case 6 mod 6
11: Listen on Rmeet . from previous game

12: if msg 6= (IDleader, succ, ∗) then
13: count← 0, state← A
14: else
15: meet← msg.[3]

16: if count > τred-blue then
17: state← E

18: case L
19: switch count do
20: case 1, 3, 5 mod 6 . block H
21: if count (mod 6) = 1 then
22: pick randomly color ∈ {red, blue}
23: Send (state, ID) on H
24: case 2 mod 6 . red-blue game

25: if color = blue then
26: Listen on G;
27: if msg = ∅ or ID /∈ msg then
28: game← fail

29: else Send (ID) on G
30: case 4 mod 6 . red-blue game

31: if color = red then
32: Listen on G;
33: if msg = ∅ or ID /∈ msg then
34: game← fail

35: else Send (ID) on G
36: case 6 mod 6 . Send game & new Rmeet

37: Send (IDleader, game, k) on Rmeet

38: meet← k
39: if game = fail then
40: count← 0, state← A

41: if count > τred-blue then
42: state← M

Nodes in the MIS state need to continue broadcasting to prevent neighboring nodes
from joining the MIS. This is accomplished by broadcasting with constant probability on
H, G and the report channels. More specifically, each node v that is in state M (i.e., that
has joined the MIS) performs one of the following two steps:

(i) If v did not broadcast its ID on channel H in the previous round, then it does so in
the current round.

(ii) If v did broadcast on channel H in the previous round, then with probability:

a. 1
2 it broadcasts its ID and status on channel H,

b. 1
4 it broadcasts its ID and status on channel G,

c. 1
4 it broadcasts its ID and status on channel Rk, with k chosen uniformly at
random in {1, . . . , 3α(1)}.

Case (a) blocks any ongoing handshakes. Case (b) knocks back neighboring leaders to
state A, preventing the red-blue game from succeeding. Case (c) knocks back neighboring
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Algorithm 6 MIS state
1: if enforce then
2: send (state, ID) on H
3: enforce← false
4: else
5: switch q do
6: case q ∈

[
0, 1

2

)
7: send (state, ID) on H
8: enforce← false

9: case q ∈
[

1
2
, 3

4

)
10: send (state, ID) on G
11: enforce← true

12: case q ∈
[

3
4
, 1
)

13: send (state, ID) on Rk
14: enforce← true

heralds to state A, and also eliminates neighboring nodes in state A, causing them to
move to E. These ongoing broadcasts ensure that we satisfy guarantee (G1) introduced in
Section 5.

Note that channel H is blocked at least once every two rounds. Thus, after v has been
in state M for 6 rounds, no new neighbors of v can switch to state L. On the other hand,
note that in every period of two rounds, with constant probability, v transmits once on
channel G. The transmissions on channel G knock back adjacent leaders that might have
been created when (or immediately after) v switched to state M due to the lonely counter.
Finally, the transmissions on the report channels let the neighboring nodes of v know that
they are dominated by v, causing them to halt. Note that those transmissions can also
knock back neighboring heralds to state A.

8 MIS Algorithm Analysis

We first cover in Section 8.1 the analysis of the decay filter, proving that guarantees (G2)
and (G3) hold. Subsections 8.2 to 8.6 cover the complex analysis of the herald filter.

8.1 Decay Filter Analysis

The analysis is an adaptation and generalization of the analysis of the active state in the
Active Wake-Up Algorithm of [12]. In particular, while the analysis in [12] requires that
the network graph can be partitioned into cliques such that the graph induced by the
cliques has bounded degree, we generalize the analysis to the significantly broader class of
bounded independence graphs. The core argument of the analysis is based on Lemma A.2
in Appendix A and on the following Lemma 8.1 which was proven in [11].

Lemma 8.1. Assume there are k bins and n balls with non-negative weights w1, . . . , wn ≤
1
4 , as well as a parameter q ∈ (0, 1]. Assume that

∑n
i=1wi = c · kq for some constant c ≥ 1.
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Each ball is independently selected with probability q and each selected ball is thrown into
a uniformly random bin. Then, w.v.h.p.(k), there are at least k

4 bins in which the total
weight of all balls is between c

3 and 2c.

In the following, for a given round r, let pu(r) be the transmission probability of node

u (i.e., pu(r) = 2j

4n if u is in phase j of decay filter and pu(r) = 0 if u is not in one of
the log n phases of the main body part) and let Pu(r) :=

∑
v∈N1(u) pv(r) be the sum of

transmission probabilities in the neighborhood of u (in G), also called the probability mass
of u by us. As a key property, we first show that in the neighborhood of each node u, the
total probability sum Pu(r) remains bounded for all rounds r, w.h.p.

Lemma 8.2. W.h.p., for all rounds r ≥ 1 and for all nodes u ∈ V , we have Pu(r) = O(F).

Proof. We need to show that w.h.p., for each node u and round r, Pu(r) does not exceed
ηF for a sufficiently large constant η > 0. For contradiction, assume that Pu(r) > ηF for
some node u and round r and that round r is the first time for which Pv > ηF for any node
v. Let T = Θ

( log(n)
F

)
be the length of one of the log n phases. As nodes only double their

transmission probabilities every T rounds, and since new nodes start the decay filter with
probability 1

4n , for any of the T rounds r′ preceding round r, we have Pu(r′) > ηF
2 −1 ≥ ηF

3
(for sufficiently large η).

Consider one such round r′ ∈ [r − T, r − 1] for which Pu(r′) > ηF
3 and where by

minimality of r, also Pv(r
′) ≤ ηF for all nodes v. Let PCu (r′) be the sum of the transmission

probabilities of the nodes in N1(u) that choose a specific channel C among the F channels
in the considered round r′. Since each node in the main-body of decay filter picks channel
C with probability 1

2F (with probability 1/2 it listens to one of the report channels), we
have η

6 ≤ E
[
PCu (r′)

]
≤ η

2 . Assuming that η is large enough, Lemma 8.1 therefore implies

that w.v.h.p.(F), on at least F
4 channels C, η

18 ≤ P
C
u (r′) ≤ η.

For node u, let Pu,2(r′) :=
⋃
v∈N2(u) pv(r

′) be the sum of the transmission probabilities

of all nodes in the 2-neighborhood of u and analogously let PCu,2(r′) be the probability sum

of the nodes in N2(u) that pick channel C. From the bounded independence property of G,
we know that the 2-neighborhood of u can be covered by the union of O(1) 1-neighborhoods.
Consequently, we get Pu,2(r′) = O(F) because Pv(r

′) ≤ ηF for all nodes v. Hence, choosing
a large enough constant κ, the number of channels C for which PCu,2(r′) > κF is less than
F
8 . Consequently, w.v.h.p.(F), there are at lest F

8 channels C on which η
18 ≤ PCu (r′) ≤ η

and PCu,2(r′) ≤ κF.

Consider one such channel C and let NC(u, r′) ⊆ N1(u) be the subset of nodes in
N1(u) that choose channel C in round r′, i.e., NC(u) is the set of nodes contributing to
PCu (r′). Further, let SC ⊆ NC(u, r′) be the nodes v ∈ NC(u, r′) for which PCu (r′) = Ω(1).
Note that by the bounded independence property of G, the subgraph induced by PCu (r′)
has bounded independence number. Therefore, applying Lemma A.2 to the graph induced
by NC(u, r′) implies that the nodes in SC contribute a constant fraction of the probability
mass in PCu (r′). Hence, since we chose a channel C for which PCu (r′) = Θ(1), w.c.p. exactly
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one node v ∈ SC transmits in round r′. Also because PCu,2(r′) = O(1), w.c.p. no other node

in N2(u) transmits on channel C in round r′. Hence, node v reaches all its neighbors on
channel C and because v ∈ SC this knocks out a constant fraction of the probability mass
contributing to PCu (r′).

We have therefore shown that on channel C and similarly on any other of the at least
F
8 “good” channels, w.c.p. at least a constant fraction of the probability mass contributing
to PCu (r′) and thus a Θ

(
1
F

)
-fraction of the total probability mass contributing to Pu(r′)

is eliminated (i.e., the respective nodes are knocked out). As soon as nodes have picked
the channels to operate on, what happens on different channels is independent. Therefore
overall on the at least F

8 “good” channels, a constant fraction of the probability mass
contributing to Pu(r′) is eliminated w.v.h.p.(F). Therefore if choosing the constant factor

in the T = Θ
( log(n)

F

)
rounds of a phase large enough, during the T rounds preceding round

r, w.h.p., a arbitrarily large enough constant fraction of the probability mass contributing
to Pu(r) is eliminated. This contradicts the assumption that Pu(r) exceeds ηF. Finally
note that for each wake-up pattern of nodes, the number of rounds in which some node
can be in decay filter is clearly upper bounded by a polynomial in n (each time a node is
reset to the beginning of decay filter, some other node moves on to herald filter). We can
therefore apply a union bound over all nodes u and rounds r to get the claim of the lemma
for arbitrary u and r.

We can now move on to proving the two decay filter guarantees (G2) and (G3).

Lemma 8.3. (G2): With high probability, for each node v and each round r, at most
O(log n) nodes in N1

G(v) come out of the decay filter in round r to enter the herald filter.
Each node that enters herald filter has spent Ω(log n) rounds in decay filter.

Proof. The second part of the claim follows immediately from the waiting part of the
decay filter. The proof of the first part is based on the previous lemma that bounds the
total probability mass in each neighborhood. By Lemma 8.2, the sum of transmission
probabilities in each neighborhood N1

G(v) is always at most O(F) = O(log n). Therefore,
the number of nodes that transmit and exit decay filter (line 14) is O(log n). As nodes
decide independently whether to transmit, by a standard Chernoff argument, this bound
also holds w.h.p. Nodes that exit decay filter in line 23 have a constant transmission
probability and thus also as a consequence of Lemma 8.2, the number of such nodes is
bounded by O(log n) in each round.

Lemma 8.4. (G3): W.h.p., for each node u that is in decay filter in round r, by round

r′ = r + O
( log2 n
F
)

+ Õ(log n), either u is dominated, in which case it has a dominating
neighbor, or at least one node in N1(u) gets out of decay filter and enters herald filter.

Proof. First of all, if node u gets out of decay filter via lines 4 or 22, u is dominated and
thus the first part of the claim of the lemma is satisfied. Otherwise, if u never receives a
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message in line 18, u exits decay filter after O
( log2 n
F
)

+ Õ(log n) rounds in line 14 or in
line 23, implying the second part of the claim. Finally, if u hears a message from node v
in line 18, node v exits decay filter and enters herald filter and therefore also in this case
the second part of the claim is satisfied.

8.2 The Analysis of the Active State

We first present some facts about the transitions of nodes from state A to states L′ and
H′. For k = O(1) we show that for the k-neighborhood of some node u, the probability
that no node in Nk(u) is being elected as a herald candidate (switching from state A to
H′) is constant, and, by adjusting π`, arbitrarily close to 1. We then give some conditions
under which the creation of a single herald candidate happens with constant probability.

Definition 8.5. (Activity Sum) For a node u we define Γ(u) :=
∑

v∈N1(u) γ(v). We call
this the activity sum or activity mass of node u.

Lemma 8.6. Fix a constant positive integer k. For any round t and node u, with probability
1−O(π`α(k)), no node v ∈ Nk(u) switches from state A to state H′ in round t.

Proof. For the whole proof we only use the graph GA induced by nodes in state A in
round t. We also solely focus on nodes v that do have at least one active neighbor in GA,
as isolated nodes cannot become herald candidates. We will use the notation NA(v) and
Nd

A(v) to refer to NGA(v) and Nd
GA

(v), respectively.
To become a herald candidate, a node v in state A must receive a message from one

of its neighbors on one of the channels A1, . . . ,AnA . This is only possible if in round t,
v chooses to listen on a channel Ai and exactly one of v’s neighbors in GA broadcasts on
channel Ai.

Hence, consider an arbitrary channel Ai from the herald election channels A1, . . . ,AnA .
Let pv(i) = 2−i ·γ(v) be the probability that an active node v chooses to broadcast or listen
on channel Ai. In addition, we define Pv(i) := 2−iΓ(v) =

∑
w∈N1

A(v) pw(i). Let Bv,w
i be the

event that v listens on channel Ai, while exactly one of its neighbors w ∈ NA(v) transmits
on channel Ai and all other neighbors w′ ∈ NA(v) are either not on channel Ai or they
choose to listen as well.

P(Bv,w
i ) = π`pv(i) · (1− π`)pw(i) ·

∏
w′∈NA(v)\{w}

(
1− pw′(i)(1− π`)

)
≤ π`pv(i)pw(i) ·

∏
w′∈{v,w}

1

1− (1− π`)pw′(i)
·
∏

w′∈N1
A(v)

(
1− pw′(i)(1− π`)

)
≤ π`pv(i)pw(i) · 4 · e−

1
2
Pv(i).
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In the last inequality, we use that pw′(i) ≤ 1
2 and that π` ≤ 1

2 . Define Bv
i to be the event

that v listens on Ai and exactly one of its neighbors transmits on that channel. Since
Bv
i =

⋃
w∈NA(v)B

v,w
i and the events Bv,w

i are disjoint for different w, we have

P(Bv
i ) =

∑
w∈NA(v)

P(Bv,w
i ) ≤ π`pv(i)Pv(i) · 4e−

1
2
Pv(i) =: Cvi .

For any x > 0 and constant c, cx2e−x = O(1), which by using x = Pv(i) implies that

Cvi = O
(
π`

pv(i)
Pv(i)

)
= O

(
π`

γ(v)
Γ(v)

)
for any fixed i. Next we show that

∑nA
i=1C

v
i = O

(
π`

γ(v)
Γ(v)

)
,

too.

Cvi+1

Cvi
=
pv(i+ 1)

pv(i)

Pv(i+ 1)

Pv(i)
e−

1
2
Pv(i+1)+ 1

2
Pv(i) =

1

4
e

1
4

Γ(v)2−i <
1

2
∀i ≥ log Γ(v) (3)

Cvi
Cvi+1

=
pv(i)

pv(i+ 1)

Pv(i)

Pv(i+ 1)
e−

1
2
Pv(i)+ 1

2
Pv(i+1) = 4e−

1
4

Γ(v)2−i <
1

2
∀i ≤ log Γ(v)− 4 (4)

We can therefore deduce the upper bounds∑
i≥log Γ(v)

Cvi ≤ 2Cvdlog Γ(v)e and
∑

i≤log Γ(v)

Cvi ≤ 2Cvmax{1,blog Γ(v)−4c},

proving the claim that
∑nA

i=1C
v
i = O

(
π`

γ(v)
Γ(v)

)
.

Using Lemma A.1, choosing G′ := GA[Nk
A(u)], w(v) := γ(v) and W (v) := Γ(v), we get

that
∑

v∈G′
γ(v)
Γ(v) ≤ α(G′) ≤ α(k). (Note that the independence number of a graph is larger

than or equal to the independence number of any induced subgraph.)
Let Bv be the event that v moves from state A to H′ and B =

⋃
v∈Nk(u) =

⋃
v∈Nk

A (u).

Then,

P(B) ≤
∑

v∈Nk
A (u)

P(Bv) ≤
∑

v∈Nk
A (u)

nA∑
i=1

Cvi =
∑

v∈Nk
A (u)

O

(
π`
γ(v)

Γ(v)

)
= O (π`α(k)) .

Choosing a sufficiently small π` concludes the proof.

Definition 8.7. (Fatness) We call a node u (or respectively its neighborhood N(u)) η-fat
for some value η > 0, if it holds that Γ(u) ≥ η ·maxv∈N(u){Γ(v)}.

Lemma 8.8. Let t be a round in which for a node u in state A in the herald filter it holds
that there is no herald, leader, or herald candidate in N2(u). Furthermore, all neighbors
of MIS nodes in N2(u) are in state E, Γ(u) ≥ 1, and either

(a) Γ(u) < 3α(1), u is 1
3α(1) -fat, and γ(u) = 1

2 , or

(b) u is 1
2 -fat and Γ(u) ≥ 3α(1).
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Then by round t′ ∈ [t, t + 7], with probability Ω(π`) either a node in N2(u) joins the MIS
or a pair (l, h) ∈ L×H is created in N1(u) such that (N({l, h}) \ {l, h})∩ (H′∪H∪L)=∅.

Proof. We make use of the notations X(u, t) and Nd
A as explained in Section 2. For the

remainder of the proof, assume that in rounds t, . . . , t+ 7, no node in N2(u) joins the MIS,
as otherwise, the claim of the lemma is trivially satisfied. In order to prove the lemma, we
first show that either in round t or in round t+ 1, w.c.p., a herald candidate is created in
N1(u). Formally, we define the event Hu as follows. In round t′, event Hu occurs iff there
are two neighboring nodes v, w ∈ N1

A(u, t′) such that

• v and w both operate on a channel λ ∈ {A1, . . . ,AnA}

• no other neighbor of v and w chooses channel λ, and

• no other node in N2
A(u, t′) receives a message on channel λ.

Clearly, if event Hu holds either in round t or t + 1, the nodes v, w have a probability of
2π`(1 − π`) of becoming a herald-leader candidate pair and no other herald candidate is
created on channel λ in that round. Combined with appropriate applications of Lemma
8.6, this suffices to prove the claim of the lemma.

In the following, for a node v ∈ N1
A(u, t′), let ΓA(v, t′) :=

∑
w∈N1(v,t′)∩N1

A(u,t′) γ(w, t′) be

the total activity value of all active nodes in round t′ in the 1-neighborhood of v restricted
to the 1-neighborhood of u. To estimate the probability that Hu occurs in a round t′ ∈
{t, t+ 1}, we first show that in one of the two rounds t′ ∈ {t, t+ 1}, with probability at
least 1

4 it holds that u is in state A and ΓA(u, t′) :=
∑

v∈N1
A(u,t′) γ(v, t′) ≥ 2

3 ·Γ(u, t). Assume

that the claim is not true for t′ = t. As the lemma statement is based on the assumption
that u is in state A in round t, this implies that ΓA(u, t) < 2

3(Γ(u, t) − γ(u, t)). Also by
the assumptions of the lemma, in round t, no nodes in N(u) are in states H′, H, or L. As
nodes w in states M and E have γ(w) = 0 and thus do not contribute to Γ(u), we therefore
have ΓL′(u, t) :=

∑
v∈N1

L′ (u,t)
γ(v, t) = Γ(u, t)− ΓA(u, t). Because by assumption, there are

no nodes in state H′ in round t, all nodes that are in state L′ in round t switch back to
state A for the next round. As by assumption, no nodes switch to states M or E, and node
v that is in state A in round t can only move out of A if it decides to operate on one of
the channels A1, . . . ,AnA . This happens with probability at most γ(v, t) ≤ 1

2 . Therefore,
with probability at least 1

2 , at least half of the total activity value of the nodes in N1
A(u, t)

remains in state A for round t + 1. And (independently) with probability at least 1
2 , also

node u remains in state A for round t+ 1. Thus, with probability at least 1
4 , u is in state A

in round t+1 and at least half of the total activity contributing to ΓA(u, t) also contributes
to ΓA(u, t+ 1). Therefore, with probability at least 1

4 ,

ΓA(u, t+ 1) ≥
(
Γ(u, t)− ΓA(u, t)

)
+

1

2
· ΓA(u, t) = Γ(u, t)− 1

2
· ΓA(u, t) ≥ 2

3
ΓA(u, t).
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The last inequality follows because we assumed that ΓA(u, t) < 2
3Γ(u, t). We also use the

assumption that no nodes switch to states M or E and therefore the activity of nodes in
N1(u) can only grow from round t to round t + 1. We therefore in the following assume
that t′ ∈ {t, t+ 1} such that ΓA(u, t′) ≥ 2

3 · Γ(u, t) and u is in state A in round t′.
To show that in round t′, event Hu occurs, we distinguish the two cases given in the

lemma statement. We start with the simpler case (a), where in round t, 1 ≤ Γ(u) < 3α(1)
and γ(u) = 1

2 . Because no node in N1(u) switches to states M or E in round t, activity
levels can only grow as they can grow at most by a factor of 1 + εγ in a single round, we
know that Γ(u, t) ≤ Γ(u, t′) ≤ (1 + εγ)Γ(u, t). We know that ΓA(u, t′) ≥ 2

3Γ(u, t) ≥ 2
3 .

Consequently, u is in state A, it has activity level γ(u, t′) = 1
2 , and the total activity level

ΓA(u, t′) − γ(u, t′) of all neighbors is between 1
6 and (1 + εγ)3α(1) = O(1). Therefore,

w.c.p., u and exactly one of its neighbors v operate on channel λ = A1. (Recall that a

node w in state A chooses channel A1 with probability γ(w)
2 .) Because we assume that u

is 1
3α(1) -fat at time t, Γ(v, t) is also bounded and therefore, w.c.p., no other neighbor of v

picks channel A1. Hence, the only thing that is missing to show that event Hu occurs with
constant probability is to prove that no other node in N2(u) hears a message on channel A1

in round t′. This follows from the following claim by choosing S = N2
A(u)∩ (N(u)∪N(v)).

Claim 8.9. Consider a round r, a set S ⊂ N2
A(u, r), and let ∂S ⊆ S be the nodes in S

that are adjacent to some node in N2
A(u, r) \ S. For a channel λ = Ai ∈ {A1, . . . ,AnA},

conditioned on the event that nodes in ∂S do not choose to operate on channel λ, the
probability that a node in N2

A(u, r) \ S receives a message on channel λ in round r is
1−O(π`).

Proof of Claim 8.9. In the following, we use the notation N := N2
A(u, r) \ S. Further, let

A be the event that nodes in δS do not operate on channel λ and for a node x ∈ N , let Bx
be the event that node x receives a message on channel λ. Event Bx occurs iff x listens on
channel λ and exactly one of its neighbors broadcasts on channel λ. The probability for a
node x ∈ N to pick channel λ is γ(x) · 2−i. We therefore have

P(Bx|A) =
π`γ(x, r)

2i

∑
z∈NA(x)\S

(1− π`)γ(z, r)

2i
·

∏
y∈NA(x)\(S∪{z})

(
1− (1− π`)γ(y, r)

2i

)

≤ π`γ(x, r)

2i
Γ(x, r)

2i
· e−Γ(x,r)2−i = O

(
γ(x, r)

Γ(x, r)
· π`
)
.

Let X be the number of nodes x ∈ N that receive a message on channel λ in round r. For
the expectation of X, we then get

E[X|A] = O(π`) ·
∑
x∈N

γ(x, r)

Γ(x, r)
= O(π`).
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The second equation follows from Lemma A.2 because the graph induced by N has inde-
pendence at most α(2). Applying the Markov inequality, we get P(X ≥ 1|A) ≤ E[X|A] =
O(π`), which concludes the proof of Claim 8.9.

We can now continue with the proof of Lemma 8.8. We have shown that in case (a),
the event Hu occurs with constant probability. Let us therefore switch to case (b), where
N(u, t) is 1

2 -fat and Γ(u, t) ≥ 3α(1). For the following argumentation, we define

N̂1
A(u, t′) :=

{
v ∈ N1

A(u, t′) : ΓA(v, t′) ≥ ΓA(u, t′)

2α(1)

}
and Γ̂A(u, t′) :=

∑
v∈N̂1

A(u,t′)

γ(v, t′).

To analyze the probability of the event Hu, consider two neighboring nodes v, w ∈
N1

A(u, t′). We define Lv,w to be the event that in round t′ both v and w decide to operate
on channel λ := dlog2 Γ(u, t)e and no other node inN(v)∪N(w) chooses the same channel λ.
Further Hv,w is the event that Lv,w occurs and in addition, no node in N2(u)\(N(v)∪N(w))
receives a message on channel λ in round t′. Claim 8.9 implies that P(Hv,w|Lv,w) =
1 − O(π`). Further, note that Hu =

⋃
v,w∈N1

A(u),{v,w}∈E Hv,w, and we have Hv,w = Hw,v

and Hv,w ∩Hv′,w′ = ∅ for {v, w} 6= {v′, w′}. It therefore holds that

P(Hu) =
1−O(π`)

2
·
∑

{v,w}∈E,
(v,w)∈(N1

A(u,t′))2

P(Lv,w). (5)

The probability for a node v ∈ A to choose channel λ is γ(v) ·2−dlog Γ(u,t)e ∈
[

1
2Γ(u,t) ,

1
Γ(u,t)

]
.

We can therefore bound the probability that Lv,w occurs in round t′ as

P(Lv,w) ≥ 1

4
· γ(v, t′)γ(w, t′)

Γ(u, t)2
·

∏
x∈N(v)∪N(w)

(
1− γ(x, t′)

Γ(u, t)

)

≥ γ(v, t′)γ(w, t′)

4Γ(u, t)2
· 4−

∑
x∈N(v)∪N(w)

γ(x,t′)
Γ(u,t)

≥ γ(v, t′)γ(w, t′)

4Γ(u, t)2
· 4−(1+εγ)

Γ(v,t)+Γ(w,t)
Γ(u,t)

≥ γ(v, t′)γ(w, t′)

Γ(u, t)
· 4−1−(1+εγ)4

Γ(u,t)
Γ(u,t) =

1

45+4εγ
· γ(v, t′)γ(w, t′)

Γ(u, t)
.

The last inequality follows because in round t, node u is 1
2 -fat. In the following, we restrict

our attention to the events Lv,w for v ∈ N̂1
A(u, t′) as these are the only ones for which we

obtain a significant lower bound on the probability that they occur. For v ∈ N̂1
A(u, t′), let

Kv :=
⋃
w∈N(v)∩N1

A(u,t′) Lv,w be the event that Lv,w occurs for some neighbor w of v. For a
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node v ∈ N̂1
A(u, t′), we then have

P(Kv) =
∑
w∈N(v)∩N1

A(u,t′)

P(Lv,w)

≥ 1

45+4εγ
· γ(v, t′)

Γ(u, t)2

∑
w∈N(v)∩N1

A(u,t′)

γ(w, t′)

=
1

45+4εγ
·
γ(v, t′)

(
ΓA(v, t′)− γ(v, t′)

)
Γ(u, t)2

≥ 1

45+4εγ
·
γ(v, t′)

(
ΓA(u, t′)− α(1)

)
2α(1)Γ(u, t)2

(6)

≥ 1

45+4εγ
· γ(v, t′)

6α(1)Γ(u, t)
.

Inequality (6) follows because γ(v, t′) ≤ 1
2 and since v ∈ N̂1

A(v) and thus ΓA(v, t′) ≥ ΓA(u,t′)
2α(1) .

The last inequality follows from ΓA(u, t′) ≥ 2
3 · Γ(u, t) ≥ 2

3 · 3α(1) = 2α(1). Using (5), we
can now bound the probability of event Hu in round t′ as

P(Hu) ≥ 1−O(π`)

2

∑
v∈N̂1

A(u,t′)

P(Kv) ≥
1−O(π`)

3α(1)46+4εγ
·
∑

v∈N̂1
A(u,t′)

γ(v, t′)

Γ(u, t)
=

1−O(π`)

3α(1)46+4εγ
· Γ̂A(u, t′)

Γ(u, t)
.

(7)
Applying Lemma A.2 to the graph induced by the nodes in N1

A(u, t′), the activity sum of

nodes in N̂1
A(u, t′) can be lower bounded as

Γ̂A(u, t′) ≥ ΓA(u, t′)

2α(1)
≥ Γ(u, t)

3α(1)
.

Together with (7), this proves that also in case (b), the event Hu occurs with constant
probability in a round t′ ∈ {t, t+ 1}. Note also that in both cases (a) and (b), for π`
sufficiently small, the probability that Hu occurs can be lower bounded by a constant q
that is independent of the probability π`.

To complete the proof, assume that in round t′, event Hu occurs with probability q
and if it occurs, nodes v and w are the two nodes in N1(u) participating on channel λ
(channel A1 in case (a)). Let M be the event that no herald is created on a channel Ai 6= λ
in round t′. Clearly, the probability that M occurs is lower bounded by the probability
that no herald is created on any channel in round t′. By Lemma 8.6, we therefore have
P(M) = 1−O(π`). For the probability that events Hu and M both occur, we then get

P(M ∩Hu) = 1−P(M ∪Hu) ≥ 1−P(M)−P(Hu) = q −O(π`).

Recall that probability q is a constant independent of π`. Conditioned on the event that
M ∩ Hu occurs, the probability that one of the two nodes v, w listens on channel λ and
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the other one broadcasts on the channel is 2π`(1− π`). In that case one of the two nodes
becomes a herald candidate and the other one its leader candidate. Also, M ∩Hu implies
that in round t′ no other herald candidates are created in N2(u). Let t′′ be the round
in {t, t+ 1} \ t′. If in addition in round t′′ and in the remaining rounds t + 2, . . . , t + 7
no herald candidate is created in N2(u), nodes v and w make it through the handshake
and become an isolated leader-herald pair as claimed by the lemma. By Lemma 8.6, this
happens with probability 1−O(π`), which by choosing π` sufficiently small concludes the
proof.

8.3 The Analysis of the Handshake

In the following lemma, we study the circumstances under which two adjacent leader-herald
pairs can coexist.

Lemma 8.10. In round r consider two leader-herald pairs (l1, h1) and (l2, h2) and suppose
that the pairs started their most recent handshakes in rounds r1 and r2, r1 ≤ r2, respectively.
Say that edge e is crossing if one of its endpoints is in {l1, h1} and its other endpoint is in
{l2, h2}. Then, either no crossing edge exists or exactly one of the following conditions is
satisfied: (1) r1 = r2 and crossing edges are {l1, l2} and/or {h1, h2}, (2) r2 = r1 + 2 and
the only crossing edge is {l1, h2}.

Proof. Since both pairs are in L×H in round r, they successfully finished their respective
handshakes at the end of rounds r1 + 5 and r2 + 5, respectively. Suppose that there is a
crossing edge. First, assume that r2 ≥ r1 + 4. Then, since nodes (l1, h1) block the channel
H every other round starting with round r1 + 6 ≤ r2 + 2, the handshake of pair (l2, h2)
cannot succeed, a contradiction.

Suppose r2 = r1 + 3. In round r1 + 3, leader l1 and herald h2 transmit. So there is
no edge between l1 and l2, or between h1 and h2, because if there was, a collision would
happen at l2 resp. h1, causing the handshake to fail. In round r1 + 4, heralds h1 and h2

transmit. By the same logic there is no edge between h1 and l2, or between h2 and l1, a
contradiction to our assumption of an existing crossing edge.

Suppose r2 = r1 + 1. In round r1 + 1, heralds h1 and h2 transmit. So there is no edge
between h1 and l2, or between h2 and l1. In round r1 + 2, leader l1 and herald h2 transmit.
So there is no edge between l1 and l2, or between h1 and h2.

Suppose r2 = r1 + 2. In round r1 + 2, leader l1 and herald h2 transmit. So there is
no edge between l1 and l2, or between h1 and h2. In round r1 + 6, herald h1 transmits on
channel H and leader l2 is receiving a message from h2. So there is no edge between h1

and l2. Thus, the only existing crossing edge is (l1, h2), between the older leader and the
younger herald.

Finally, let r1 = r2. If l1 neighbors h2 or l2 neighbors h1, then in both cases the
handshakes of one of both pairs (l1, h1) or (l2, h2) fails in round r1 = r2, contradicting our
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assumption of a successful handshake for both pairs. Due to the synchronous actions a
crossing edge between two leaders or two heralds can exist.

8.4 The Analysis of the Red-Blue Game

We next study the exact guarantees of when and how pairs get knocked out in the red-blue
games.

Definition 8.11. (Maturity) We say that candidate v is mature in round t, if v is in
round 5 or 6 of its respective handshake.

Definition 8.12. (Good Pair, Bad Pair) Consider a leader-herald pair (l, h) in round
t. We say pair (l, h) is a good pair if in round t none of the neighbors of l (other than h)
is in state L, H or is a mature candidate. Otherwise we say that (l, h) is a bad pair.

Lemma 8.13. If a pair (l, h) is good in round t and they started their first red-blue game
in round r, then, w.h.p., either

• the related leader l joins the MIS by the end of round r+ τred−blue = r+O(log n), or
• a node v ∈ N(l) ∪ N(h) joins the MIS before round r + τred−blue = r + O(log n) by

increasing its lonely counter above τlonely.

Proof. Consider a herald-leader pair (l, h) that is good in round t.
The herald h only listens in round 6 of the red-blue game, but the only nodes sending

on channels Rk are leaders or MIS nodes. So, in round t′ ≥ t, h either gets knocked out by
its own leader l, which only happens if l records a failure itself and which we cover below.
Or h gets knocked out by a different leader which is also in round 6 of its red-blue game,
which, by Lemma 8.10, cannot happen, because at time t, h is already a herald and thus
made it through the handshake successfully. Or h neighbors an MIS node v in round t′.
If v moved to state M from state L, then v started its first red-blue game in round r − 2
by Lemma 8.10, i.e., it survived Θ(log n) games while being next to h—w.h.p., this cannot
happen. Thus, for h to be knocked out by v 6= l, v needs to join the MIS via the lonely
counter.

The leader l only listens in either round 2 or round 4 of a particular red-blue game on
channel G. It thus gets knocked out in round t′ ≥ t only if another node v 6= h sends in
that particular round on G. Let v be another leader. By Lemma 8.10 that leader started
its handshake in round r − 6, too, but then l neighbors that leader also in round t, which
is a contradiction to the definition to (l, h) being a good pair in round t. Thus, let v be a
herald in round t′. By Lemma 8.10 v started its red-blue game 2 rounds after l, but then v
was either a herald or a mature candidate by time t, also a contradiction to the definition
of a good pair. So v has to be an MIS node. If v went through state L then by the time
t′ node l also is an MIS node due to Lemma 8.10, so both nodes survived Θ(log n) games
with none getting knocked out, w.h.p. that does not happen. Thus v joined the MIS via
the lonely counter.
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Lemma 8.14. Consider a node v and suppose that in an arbitrary round t, there is a
leader or herald of a bad pair in N3(v). Then, with constant probability, in round t + 12,
no node in N3(v) is in state H′ and all leaders and heralds are part of a good pair.

Proof. Consider all the bad leader-herald pairs (bad at time t) and all the pairs (l′, h′) ∈
L′×H′ at time t with both ends in N4(v), which have finished their handshake successfully
by the end of round t + 5. Let us call each such pair interesting. We know that with a
constant probability, in rounds t, . . . , t+12, no node in N3(v) other than those in interesting
or good pairs is in a state in {L,H,H′}. We assume this as given. For each interesting
pair, also consider their 6 round red-blue game that is fully contained in round interval
[t+1, t+11]. We always consider the first element in our pair notation the leader or leader
candidate of the corresponding interesting pair.

For an interesting pair (l, h) we say it conflicts, if l neighbors another leader or herald
node in [t, t + 5]. We show that with constant probability all such pairs get knocked out
by round t + 12. An interesting pair, which is not conflicting satisfies the conditions of a
good pair by round t+ 5, which does not conflict with the statement of the lemma. Thus
we also assume all interesting pairs to be conflicting.

Consider an interesting pair (l1, h1) and suppose that they finish their related red-blue
game in round r1 ∈ [t+ 6, t+ 11]. We say (l1, h1) is isolated if there does not exist another
pair (l2, h2) (which has to be interesting, too) such that l1 and l2 are adjacent.

Given this definition, the proof has two parts. We first show that with constant proba-
bility, no conflicting interesting isolated pair remains not knocked out. Then in the second
part, we show that with at least a constant probability, no non-isolated conflicting inter-
esting pair remains not-knocked out. These two show that no interesting conflicting pairs
can remain not knocked out which would complete the proof.

The total number of isolated interesting pairs is bounded by α(3). Hence, the probabil-
ity that the leader of each isolated interesting pair is red in its red-blue game fully contained
in rounds [t + 1, t + 11] is lower bounded by 2−α(3) = Ω(1). In the rest of the proof, we
assume that the leader of each isolated interesting pair is red (their choices are indepen-
dent). Consider two neighboring interesting isolated pairs (l1, h1) and (l2, h2) and suppose
these two pairs started their red-blue games in rounds respectively r1, r2 ∈ [t + 1, t + 6]
and r1 ≤ r2. By definition of isolated pairs and from Lemma 8.10, we get that either (1)
r1 = r2 and the only crossing edge is between h1 and h2, or (2) r2 = r1 + 2 and the only
crossing edge is between l1 and h2. In the first case, these two pairs do not conflict with
each other. In the second case, since l1 is red in the red-blue game starting in round r1, in
round r1 + 3, leader l1 does not receive the message of its herald h1 on channel G. This is
because, in that round, h2 is transmitting on channel G. Hence, pair (l1, h1) gets knocked
out. This completes the study of interesting isolated pairs since all of them are conflicting,
i.e., their leader (resp. possible leader candidate at time t) neighbors another herald and
the color choice causes them to be knocked out.

In order to complete the proof, we show that with at least a constant probability, each

30



non-isolated interesting pair is knocked out. Consider two non-isolated interesting pairs
(l1, h1) and (l2, h2) such that l1 and l2 neighbor each other. Due to Lemma 8.10 both pairs
finish their red-blue game in the same round.

Let Lr be the set of non-isolated leaders of interesting pairs that finish their red-blue
game in round r ∈ [t+ 1, t+ 6], and let Hr be the graph induced on leaders Lr. Note that
for each r ∈ [t + 1, t+ 6], Hr is an induced subgraph of N4(v) and thus, it has maximum
independent size at most α(4).

Let Sr be a maximal independent set in Hr. Then, let Tr be a maximal independent
set in Lr \ Sr. Also, define T ′r as follows: for each non-isolated leader l ∈ Sr that does not
have a neighbor in Tr, add an arbitrary neighbor of l to T ′r. It is clear that |Sr| ≤ α(4),
|Tr| ≤ α(4), and |T ′r| ≤ |Sr| ≤ α(4). Thus, with a constant probability, all leaders in Sr
choose red color while all leaders in sets Tr and T ′r choose blue color, in their red-blue game
ending in round r. For each leader l ∈ Lr, if l ∈ Sr, then Tr ∪ T ′r contains a neighbor of l,
and if l /∈ Sr, then l has one neighbor in Sr and one neighbor in Tr. Thus, if all leaders in Sr
choose red color while all leaders in sets Tr and T ′r choose blue color, then each non-isolated
leader l ∈ Lr has at least one adjacent non-isolated leader in Hr that has a color different
than that of l. If this happens, each non-isolated leader l ∈ Lr is knocked out. Thus,
with constant probability, each non-isolated leader l ∈ Lr is knocked out. Hence, noting
that adding adjacent leaders can only increase the probability of getting knocked out (note
that pairs continue their game till the end of the game even if they are knocked out), we
conclude that, with constant probability, for each r ∈ [t+ 1, t+ 6], each non-isolated leader
l ∈ Lr is knocked out. This completes the proof.

8.5 The Analysis of the MIS State

Here we present the main safety guarantee of our MIS algorithm.

Lemma 8.15. W.h.p., the nodes in state M always form an independent set. Moreover,
if a node v enters state M in round t and a node w ∈ N(v) is awake in round t, then in
round t′ = t+O(log n), w.h.p., w is in state E.

Proof. We start by proving the first part of the lemma. Fix two arbitrary adjacent nodes u
and v and let Eu,v be the event that nodes u and v are the first pair of adjacent nodes (first
in time) that are in the M simultaneously. Here, if two or more adjacent node pairs are in
M simultaneously (i.e., in the case of a tie between pairs), then break the tie based on the
ids the nodes (comparing the smaller ids of the two pairs first and then the larger ids of
the two pairs). We show that for each pair of adjacent nodes u and v, w.h.p., event Eu,v
does not happen. A union bound over all pairs then shows that, w.h.p., no two adjacent
nodes are in state M simultaneously, proving the independence claim.

Considering the fact that nodes can enter M through two paths—(P1) through being
a leader, or (P2) because of having lonely > τlonely—we divide the analysis into three cases
(A), (B) and (C) as follows.
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(A) Nodes u and v both take path (P1), i.e., they both enter M through becoming a
leader. Using Lemma 8.10, we can infer that adjacent nodes u and v can enter (and
coexist in) state M by taking path (P1) only if u and v enter state M simultaneously.
In this case, nodes u and v perform Θ(log n) red-blue games synchronously. In each
of these red-blue games, with probability 0.5, nodes u and v choose different colors
and thus, both of them get knocked out. Hence, during Θ(log n) red-blue games,
w.h.p., the two nodes u and v get knocked out.

(B) Nodes u and v both take path (P2), i.e., they both enter M through having lonely >
τlonely. Without loss of generality, suppose that v enters M no later than u. Then,
consider τlonely = Θ(log n log logn) rounds before the time that u enters M. If v was
in the MIS for Ω(log n) rounds before u joins, w.h.p., v would eliminate u before that
point via broadcasting on report channels. Thus assume that they join M within
O(log n) rounds, implying that they spent Θ(τlonely) rounds next to each other in
states A and L′. Note that in each two consecutive rounds of this interval, with
at least a constant probability, there is a round that both u and v are in state A.
Let r be one of these rounds and let k be the number of neighbors of u in state A.
Note that k ≥ 1 because v is in among them. Moreover, k ∈ O(log3 n). Thus, in
round r, u has a probability Ω( 1

log logn) for listening to channel Sj where j = d 1
ke.

If u listens to this channel, the probability that exactly one of its neighbors in state
A transmits on channel Sj is k

2−j
(1 − 1

2−j
)k−1 = Θ(1). That is, in round r, with

probability at least a positive constant, u receives a message from v or some other
node. Hence, throughout the Θ(τlonely) = Θ(log n log log n) rounds of this period,
with high probability, u receives a message and thus, it does not enters M.

(C) One of the nodes u and v takes path (P1) while the other one takes path (P2). That
is, without loss of generality, v enters M through becoming a leader of a good pair and
u enters M through having lonely > τlonely. Let rv be the round in which v starts its
first red-blue game and let r′v be the round in which v enters M. Moreover, let ru be
the round in which u enters herald filter and let r′u be the round in which u enters state
M. Note that r′v − rv ≥ τred-blue = Θ(log n) and r′u − ru ≥ τlonely = Θ(log n log logn).
We emphasize that this is a deterministic guarantee.

First consider the case r′v ≥ r′u + 1
2τred-blue. In that case u had 1

2τred-blue rounds to
disrupt v’s red-blue games. Consider a single 6-round red-blue game of v, starting
at a round r ≥ r′u. u’s action in round r might be deterministic, but w.c.p. in round
r+ 1 it sends on G. Similarly, w.c.p., v chooses blue for that red-blue game, in which
case v gets knocked out. This applies for each red-blue game after round r′u and thus,
using a Chernoff bound, w.h.p., after O(log n) games, v is knocked out.

Next consider r′v < r′u + 1
2τred-blue. Then u neighbors v for at least 1

2τred-blue rounds
while v is in state L, before v moves to state M. Since u and v are the first nodes
that violate independence, u has no more than α(1) neighbors in state M during that
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interval. If v broadcasts on one of the report channels in round r of the interval, then
u might have more than α(1) leaders nearby, in which case at least one of them is
part of a bad pair.

By Lemma 8.14 in round r+ 12 w.c.p. all leaders in N(u) are part of good pairs and
no node in N1(u) went to state H′ in rounds r, . . . , r+ 12 due to Lemma 8.6—in the
case that Lemma 8.14 provides us with a new MIS node instead, notice that this can
happen at most a constant number of times. Since u moves to state M via its lonely
counter, w.c.p., u does not broadcast in round r + 11, i.e., it is in state A in round
r+12. Thus, w.c.p., it hears from v in that round. Applying a Chernoff bound again
concludes the claim and thus the first part of the lemma.

For the second part of the lemma, we now assume the first part. However, we remark
that we proved the statement of the second part directly in some of the cases of the first
part. Suppose node v is in state M in round t and consider an arbitrary neighbor w of v
that is awake in round t. Note that in rounds ≥ t, v blocks channel H once every two
rounds. Moreover, once every two rounds in rounds ≥ t, v blocks channel G with a constant
probability. Finally, once every two rounds in rounds ≥ t, v transmits on a channel Rk. We
know that in rounds ≥ t+6, w is in one of states L′,H′,H,E. Hence, in every 6 consecutive
rounds after t+ 6, w receives a message from v with constant probability. Therefore, with
high probability, by round t+ Θ(log n), w has received a message from v and has thus quit
the algorithm, by entering state E.

8.6 Putting the Pieces Together

In this section, we wrap everything up to show that guarantees (G1), (G4) and (G5) hold.
Together with the guarantees (G2) and (G3) handled in Section 6 we finalize the proof of
Theorem 5.1.

Lemma 8.15 immediately proves (G1) for all nodes currently in the herald filter. All
nodes in the decay filter, both at the beginning as well as during the main body part, listen
to the report channels w.c.p. in every round. Thus, either they learn of a neighboring MIS
node within O(log n) rounds, or they move forward to the herald filter in that time bound.
In the latter case, after that transition, Lemma 8.15 takes care of those nodes.

Lemma 8.15 also immediately gives us (G5). The only thing that remains to be shown
is the progress guaranteed by (G4). To do so, we use the following lemma.

Lemma 8.16. Consider two neighboring nodes u and v such that both are in the herald
filter at time t and assume that no node in N(u) ∪ N(v) has joined the MIS by time t.
Then, w.h.p., some node u′ in the O(log log n)-neighborhood of u joins the MIS between
times t and t+O(log n).

Proof. W.l.o.g., assume that at time t, the activity of u and v have already reached the
maximum level γ(u) = γ(v) = 1

2 . Otherwise, there is a new MIS node in the O(log log n)-
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neighborhood of u by time t′ = t + O(log log n) when the activity level of both u and v
reach 1

2 or we can start the argument at time t′.
Clearly, Γ(u) ≥ 1. W.h.p., within O(log n) rounds all MIS nodes in N3(u) inform their

neighbors about their state, eliminating them.
First assume that Γ(u) < 3α(1) for O(log n) rounds and that u is 1

3α(1) -fat. In that case

we can apply Lemma 8.8 to get that w.c.p. a node u′ in N(u) moves to state L alone, i.e.,
forming a good pair with some node v′. If this is the case, then by Lemma 8.13, w.c.p.,
we will get an MIS node in N2(u) within O(log n) rounds, which finishes the claim. If
u′ however is part of a bad pair, then w.c.p. within 12 rounds all members of bad pairs
in N2(u) go back to state A. By Chernoff at most O(log n) bad pairs are created before
a good pair is, also finishing our claim. Thus consider the case in which Γ(u) < 3α(1)
for O(log n) rounds, but u is not sufficiently fat. By the definition of fatness and the fact
that Γ(u) ≥ 1, however, this implies that one of u’s neighbors v has an activity sum of
Γ(v) ≥ 3α(1). If v itself is not 1

2 -fat, then, due to guarantee (G2) from decay filter, within
distance δ = O(log log n) there is a node w that is both 1

2 -fat and has Γ(w) ≥ 2δ · 3α. In
which case we can again apply Lemma 8.8. Standard Chernoff gives us the desired result.

Thus let Γ(u) rise above 3α(1) within O(log n) rounds. Note that the only way for Γ(u)
to drop is to have a new MIS node within N2(u) arising, so we assume that this is not the
case. With analogous reasoning to the previous case in which u was not sufficiently fat, we
can apply to u the same chain of reasoning that we applied to v before. But that covers
all possible cases, concluding our proof.

Lemma 8.17. (G4): W.h.p., for each node v that is in the herald filter in round r, by round
r′ = r + Õ(log n), v is dominating or dominated. In the latter case, v has a dominating
neighbor.

Proof. Consider a node u in the herald filter in round r. If u does not neighbor any other
node in the herald filter, within O(log n log logn) rounds it decides to move on to state M
or it stops being alone. Since the former completes the proof we assume the latter and
let v be one of u’s neighbors in the herald filter. If v is an MIS node, then by Lemma
8.15 u is dominated within O(log n) rounds, completing the proof. Thus we assume that
N(u) ∩M = ∅.

Case 1: v already neighbors a node in the MIS. But then within τlonely = O(log n)
rounds v becomes eliminated and either u is alone again or it neighbors another node v′ in
the herald filter.

Case 2: (N(u)∪N(v))∩M (∗)
= ∅. The conditions for Lemma 8.16 are satisfied and we get

that a new MIS node arises in Nd(u) with d = O(log log n) within O(log n) rounds. W.h.p.,
every new MIS node complies with Lemma 8.15 and thus this can happen at most α(d) times
before the conditions of Lemma 8.16 can no longer be satisfied. Since α is a polynomial,
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the total amount of time needed until condition (∗) is violated or it has no neighbor v
anymore in the herald filter, is O(α(d) log n) = O

(
log n (log log n)deg(α)

)
= Õ(log n).

In both cases, after Õ(log n) rounds u either

• joins the MIS itself or
• one of its neighbors does and it dominates u or
• a node in distance 2 joins the MIS and eliminates all its neighbors.

The first two possibilities complete our proof again. In the latter, u is either alone or it
neighbors a different node v′ such that one of the above two cases holds and we repeat. In
total, however, u can drop back to being alone or neighboring a different node v′ at most
α(2) times, and every time it has to wait at most τlonely +O(α(d) log n) = Õ(log n) rounds.
This completes our proof.

9 Connected Dominating Set and its Applications

In this section, we use our MIS algorithm solution as a building block in solving other
problems efficiently in the multichannel environment. Our main technical result is a new
algorithm that uses the MIS solution as a subroutine to build a constant-degree connected

dominating set (CDS) in O
( log2 n
F
)

+ Õ(log n) rounds. We then use this structure as an

overlay to derive solutions to broadcast and leader election that run in O
(
D + log2 n

F
)

+

Õ(log n) rounds, and to k-message multi-message broadcast that runs in O
(
D+k+ log2 n

F
)
+

Õ(log n) andO
(
D+k log n+ log2 n

F
)
+Õ(log n) rounds for unrestricted and restricted message

sizes, respectively.

9.1 Connected Dominating Set

First, we show how to construct a constant-degree CDS in O
( log2 n
F
)

+ Õ(log n) rounds. At
a high-level, our solution builds an MIS and then connects every pair of MIS nodes that
are within 3 hops using a constant-length path. As argued in [8], the resulting structure is
a constant-degree CDS. 3

Our algorithm faces three key challenges:

(1) MIS nodes must keep revisiting the MIS algorithm to prevent newly activated nodes
from joining the MIS;

(2) since nodes might end the MIS stage at different rounds, they might also start the
CDS stage at different rounds, causing synchronization issues (the CDS stage cycles
through fixed-length phases);

3Technically, the argument in [8] leverages a slightly stronger constraint on the graph structure than
the bounded independence we assume here. But it is straightforward to see that the same constant-degree
property holds for the latter property.
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(3) MIS nodes must discover MIS nodes within distance 3 within Õ(log n) rounds.

We overcome the first challenge by letting MIS nodes act w.c.p. on the report channels
R1, . . . ,R3α(1) every constant number of rounds.

For the second challenge we let MIS nodes participate only with a constant probability.
Non-MIS nodes also only participate if they have exactly one participating MIS node in
their neighborhood with whom they are synchronized. This will eventually lead to the
event that only a single MIS node and some of its neighbors are active, which is enough
for the algorithm to progress.

The third challenge is overcome by letting non-MIS nodes disseminate information
about their dominating nodes with a strategy that considers the possibility of having many
neighboring nodes that ’serve’ the same nodes in the ongoing cycle.

Overview. We provide a detailed description of the algorithm below before proceeding
with the analysis. Pseudo-code for the algorithm is given by Algorithm 7.

We assume the algorithm can make use of its own collection of Θ(F) channels, which
are disjoint from those used by the MIS algorithm. Those channels are C1, . . . , CnC and
the special channel C. For simplicity, we assume here that nC = log n, and explain how to
adapt the protocol in case nC is smaller.

Transition from the MIS to CDS Stage. Our CDS algorithm begins with nodes
running our MIS algorithm. We call this the MIS stage. Eventually, nodes move on to the
CDS-specific routines described below. We call this the CDS stage. We must be careful
about this transition to ensure that a node that advances to the CDS stage does not neglect
its obligations to the MIS algorithm. In more detail, when a node u is elected to the MIS
we have it remain in state M for an additional c1 log n rounds, for some constant c1 ≥ 1
we fix below. Only after these rounds does it move on to the CDS stage. At this point, we
still require u to return every constant number of rounds to the report channels monitored
in the first Θ(log n) rounds of the decay filter, and broadcast with constant probability.
Notice, if we choose a sufficiently large constant c1, by the time u enters the CDS stage,
every awake neighbor of u either knows about u or is early enough in the initial listening
stage of the decay filter that it will subsequently receive a message from u on one of the
report channels before it can advance. It is here that we set c1 to get sufficiently high
probability of this property holding. On the other hand, a node that learns that it is not
in the MIS, can immediately advance to the CDS stage.

Handling Asynchronous Starts. Because we assume asynchronous starts, nodes will
potentially finish the MIS stage at different rounds. We must ensure the CDS stage handles
this properly. In more detail, notice that the CDS stage described below consists of four
constant-round phases—announce, dense search, sparse search, and report—which it cycles
through again and again. We call each cycle through all four phases an instance. Due to

36



Algorithm 7 Non-MIS node v participating in instance i of MIS node u with F = Ω(log n)
1: path, contains paths that includes v
2: discovered, contains discovered MIS nodes
3: knowledge, an array such that knowledge[u] contains the MIS nodes u knows about at this point

4: . Announce phase (1 round)
5: Set bcast← 1 with probability 1

2
otherwise bcast← 0

6: if path 6= ⊥ and bcast = 1 then
7: broadcast(〈non−MIS, path〉 on channel C)
8: else
9: listen(on channel C)

10: if received message m = 〈MIS, u, S〉 then
11: knowledge[u]← knowledge[u] ∪ S
12: if S contains a path that includes v, add this to path and join CDS

13: . Sparse Search phase (1 round)
14: Set bcast← 1 with probability 2−(i mod dlog logne) otherwise bcast← 0
15: if bcast = 1 then
16: broadcast(〈u〉 on channel C)
17: else
18: move to next round
19: . Dense Search phase (1 round)
20: Set bcast← 1 with probability 1

2
otherwise bcast← 0

21: if bcast = 1 then
22: Choose channel Cc with probability 2−c

23: broadcast(〈u〉 on channel Cc)
24: else
25: wait until next round
26: . Report phase (3 rounds)
27: if discovered contains nodes R not in knowledge[u] then
28: with probability 1

2
do

29: broadcast(R on channel C) . – round 1 of phase

30: herald← 0 . – round 2 of phase
31: choose channel Cc with probability 2−c

32: with probability 1
2
do

33: broadcast(R on channel Cc)
34: otherwise
35: listen(on channel Cc)
36: if received a message then
37: herald← 1
38: if herald = 1 then . – round 3 of phase
39: broadcast(R on channel C)
40: else
41: move to next round
42: else
43: wait 3 rounds

bounded independence (which bounds the number of MIS nodes in a region), a non-MIS
node entering the CDS stage will hear from its MIS neighbor(s) already in the stage within
O(log n) rounds, and a new MIS node entering the stage will notify all its neighbors of its
presence also within O(log n) rounds.

Our remaining concern is the possibility that the phases executed by one MIS node
might be out of synchronization with those of a nearby MIS node. We will address this
situation below by having non-MIS nodes participate in a given instance of an MIS neighbor

37



only if that neighbor flipped heads for the instance while all nearby overlapping instances
flipped tails (we formalize this below). A non-MIS node that is not participating in an
instance in a given round, generates a random bit. If the bit is 0, it listens on channel C,
otherwise it chooses a channel from C1, . . . , CnC with uniform randomness and listens. We
will show this provides sufficient synchronization for the search phases to function.

CDS Stage: MIS Nodes. Each MIS node v in the CDS stage divides rounds into
instances each consisting of four phases.

An MIS node v begins by generating a string of random bits with uniform independent
probability. We call this its coin sequence. This coin sequence will be shared with its
neighbors (i.e., non-MIS nodes that u dominates) who will use it to decide whether or not
to participate in a given instance. For simplicity, we assume v fits sufficiently many bits in
a single message to satisfy the demands of this stage (which consumes 1 bit per instance).
In practice, v can simply update the bits in its message on a regular basis.

In more detail, during the first phase of each instance, if v has a 1 in the corresponding
bit of its coin sequence, it will broadcast, w.c.p., an announcement message on channel
C that contains: its coin sequence, the IDs of all MIS nodes within 3 hops that it knows
about, and a 2 or 3 hop path to each such nearby node. During the other phases of the
instance, v listens on channel C. If v learns about a new nearby MIS node during any of
these rounds, and v’s ID is smaller, it chooses a path to this node (as demonstrated below,
it will learn about at least one path when it learns about the new nodes) and adds it to
the information it includes in its announcement messages.

CDS Stage: Isolation Non-MIS nodes have a more complicated task as they must
decide for which, if any, of their MIS neighbors’ instances to participate. Note that a given
non-MIS node u has knowledge of the full coin sequence of each MIS neighbor it knows
about. Node u considers a given instance of a given MIS neighbor v to be locally isolated
if and only if v has a 1 in the corresponding bit for its coin sequence, and all overlapping
instances that u knows about have a 0 in the corresponding bit. Node u participates only
in locally isolated instances. Similarly, we say an instance for v is globally isolated if no
overlapping instance from an MIS node within 3 hops of v has a 1 bit in the corresponding
bit of its coin sequence.

CDS Stage: Non-MIS Node Participation When a non-MIS node u decides to
participate in a given instance i of an MIS neighbor v, it proceeds through the following four
phases. These phases are described below and in the pseudo-code presented in Algorithm 7.

During the announce phase, if u is on a path selected by an MIS node (i.e., u is in
the CDS), then it broadcasts this information w.c.p. on channel C. Otherwise, it listens on
channel C. If it hears a message from MIS node v, then this message will include:

(a) all the MIS nodes that are within 3-hops of v that v has discovered; and
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(b) paths to each of these nearby MIS nodes.

If u learns from this message that has been selected on one such path, it joins the CDS,
stores the path, and it will add it to the list of paths it announces in subsequent announce
phase rounds. Otherwise, it simply updates its local snapshot of v’s knowledge of nearby
MIS nodes. (It maintains these snapshots so that in later phases, if it learns about a nearby
MIS node, it knows whether or not v has already heard about this nearby node.)

During the sparse search phase, neighbors of v will attempt to announce v to
nearby nodes. To do so, u will broadcast v’s identity on channel C with probability
2−(i mod log logn), where i is the instance number.

The dense search phase has neighbors of v try another tactic for announcing v.
Their behavior decides on the size of F . In this phase, if nC = log n, u chooses a channel
Cc with probability 2−c (i.e., as in the herald protocol from the MIS algorithm), and then
broadcasts w.c.p. the ID of v. If nC is smaller, then nodes cycle through

⌈ logn
F
⌉

subsets of
these probabilities, selecting probabilities based on the instance number.

The report phase allows a neighbor u of MIS node v to try to report information
about nearby MIS nodes u has recently heard of and that are not included in the most
recent announcement messages u has received from v. This phase requires 3 rounds. If
u has new information to report to MIS neighbor v, then u will spend the next 3 rounds
attempting to report to v. Notice, when u learns about a new MIS node, it has also learned
a path to this MIS node (i.e., if u hears from some neighbor w of a new MIS node, then
the path is u to w to the new node; if it hears directly from the new MIS node, then the
path consists only of u itself), Assume u attempts to report to v. During the first round,
u broadcasts w.c.p. its new knowledge on channel C. (This handles the case where only a
small number of v’s neighbors have information to report.) In the next round, as in the
dense search phase, it chooses channel Cc with probability 2−c and then broadcasts w.c.p.
its new information. If u decides to listen in the second round and it receives a message
it then acts as a herald for this message in the third round, rebroadcasting it w.c.p. on
channel C. This case handles larger collections of nodes to report to v. Again, if there are
fewer channels, then we can cycle through the possible subsets of probabilities.

CDS Stage: Non-MIS Nodes Not Participating. As mentioned, in rounds in which
a non-MIS node u is not participating in an instance, it either listens on channel C, or
chooses a channel from C1, . . . , CnC with uniform probability. If u hears a search phase
message during these rounds, it will add the corresponding MIS node to its set of nodes it
has discovered, and label it with a path. If u hears an announce message from a non-MIS
node, it only cares if that node is announcing a path that includes u, at which point u
would add this path to its list of paths it is on, and joins the CDS, if it has not already.
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Analysis

We now analyze the above algorithm. We begin by proving a property regarding global iso-
lation that follows in a straightforward manner from our bounded independence assumption
(which tells us there are O(1) MIS nodes in any constant-hop neighborhood).

Lemma 9.1. Fix an instance i of MIS node v. W.c.p., instance i is globally isolated.

We leverage this property to prove the efficiency of the announce phase.

Lemma 9.2. Fix some round r and node v such that v is either an MIS node or v knows
it is in a CDS path. It follows that, w.h.p., every neighbor of v will receive at least one
announce phase message from v in the interval [r, r + Θ(log n)].

Proof. Node v will succeed w.c.p. every time it participates in an instance. To see why,
notice that there are at most a constant number of other MIS nodes and nodes on a CDS
path within 2 hops of v (by our bounded independence assumption). Node v participates
w.c.p. every constant number of rounds (by Lemma 9.1). Therefore, Θ(log n) rounds are
enough for it to succeed with high probability.

To analyze the search and report phases, the following notation will prove useful. Let
M be the set of MIS nodes and C = V \M be the covered (i.e., non-MIS) nodes. For a
given covered node ci ∈ C, let S(ci) ⊆ M be the one or more MIS nodes that neighbor
ci. Conversely, for MIS node mi ∈ M , let W (mi) ⊆ C be the non-MIS nodes neighboring
mi. For any two nodes u, v, let d(u, v) be the shortest distance between u and v in hops.
Notice, if an instance of mi is globally isolated, no node within range of {mi} ∪W (mi) is
participating.

The following lemma is an implication of Lemma 5.2 of our study of leader election
in single hop multichannel networks [11] (the original lemma actually proves something
stronger). It will prove useful in analyzing the dense search phase.

Lemma 9.3 (Follows from [11]). Assume each node in a non-empty set A of nodes in-
dependently chooses a channel from among log n channels using an exponential probability
distribution. W.c.p., there is at least one channel with at least one and no more than
constant number of nodes.

We now show that the sparse and dense search phase combine to ensure that covered
nodes efficiently discover nearby supervisors.

Lemma 9.4. Let si, sj ∈ M, i 6= j, be two MIS nodes such that d(si, sj) ≤ 3. Within

O
( log2 n
F
)

+ Õ(log n) rounds at least one of the following two conditions hold:

(1) some wi ∈W (si) has sj in its discovered set; or
(2) some wj ∈W (sj) has si in its discovered set.
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Proof. We know d(si, sj) > 1, by the independence property of the MIS. If d(si, sj) = 2,
then by definition W (si)∩W (sj) 6= ∅, so there is a covered node that begins the algorithm
with knowledge of both si and sj—satisfying the lemma.

Assume, therefore, that d(si, sj) = 3. Every 3-hop path between these MIS nodes must
go from si to a node in W (si) to a node in W (sj) to sj . Let Bi ⊆ W (si) be the nodes
covered by si that neighbor nodes in W (sj), and let Bj ⊆ W (sj) be the nodes covered by
sj that neighbor nodes in W (si) (here the B indicates that these nodes bridge the worker
sets). In the two search phases, workers (i.e., nodes covered by MIS nodes) attempt to
propagate the IDs of their MIS nodes to their neighbors. To satisfy the lemma, therefore,
it is sufficient for a message from Bi to reach Bj , or vice versa.

We consider two cases. In the first case, some node u ∈ Bj has less than log n neighbors
in Bi. Let Nu be the set of these neighbors. We turn our attention to the sparse search
phase. In particular, consider the next instance of si in which during the sparse search
phase the probability p̂ ∈

[
1
k ,

2
k

]
, for k = |Nu|, is used. W.c.p. this instance is globally

isolated. If it is globally isolated, the nodes in |Nu| broadcast with probability p̂ during
this phase. By the definition of global isolation, u is not participating during this round,
so it will receive on channel C with probability 1

2 . It follows that u receives a message from
Bi with probability psolo, bounded as:

psolo =
1

2

k∑
p̂

k−1∏
(1− p̂) ≥ 1

2
k · 1

k

(
1− 2

k

)k
≥ 1

2 · 42
= Θ(1).

Therefore, w.c.p., information moves from Bi to Bj every log log n phases (and thus,
everyO(log log n) rounds). It is straightforward to therefore conclude thatO(log n log log n)
rounds are enough to ensure this occurs with high probability.

The second case assumes that every node in Bj has at least log n neighbors Bi. Here
we turn our attention to the dense search phase. Consider an instance of sj that is globally
isolated. Consider the dense search phase of this instance. If nC = logn), it follows from
applying Lemma 9.3 with A = Bj , that w.c.p. there is one channel Cc on which a single
node u from Bj broadcasts. Let Nu be u’s neighbors in Bi. We know that the nodes in Nu

are not participating in this round. We also know that |Nu| ≥ log n. In expectation, half
of these nodes decide to choose a channel from C1, . . . , CnC at random. Therefore, w.c.p.,
we have at least one node on Cc.

We have shown, therefore, that in this case, information passes from Bj to Bi w.c.p.
every constant number of rounds. On the other hand, if nC < log n, we have to wait up to⌈ logn
nC

⌉
instances in expectation until we get to an instance where the dense search phase

includes a well-matched channel selection probability for the size of Bj .

In either case, O
( log2 n
F
)

+ Õ(log n) rounds are enough to ensure this happens with high
probability.

We now turn our attention to the report phase. Let u ∈M be an MIS node. Assume u
has at least 1 neighbor with information to report to u. Our goal is to prove that at least
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one such node succeeds in delivering this information w.c.p. within a constant number of
rounds. Because the report phase uses the same algorithm strategy as the herald filter
from the MIS algorithm, we can leverage our existing analysis of that filter to simplify the
below.

Lemma 9.5. Fix some MIS node u and round r such that at least one neighbor of u has
information to report to u in round r. W.h.p., u will receive a report during a report phase
round during the interval [r, r + Θ(log n)].

Proof. Consider the next instance of u. W.c.p., this instance is globally isolated. Assume
this is the case. We now turn our attention to the report phase of the instance. Let R be
the non-empty set of nodes competing to report to u. If |R| = 1, then, w.c.p., the single
v ∈ R will broadcast in the first round of this phase. Because the instance is globally
isolated, it will have no contention, and therefore succeed with constant probability.

The second case is when |R| > 1. Here, the nodes in R will participate in the basic
logic of the herald filter, in that they first choose a channel Cc with probability 1

2c , and
then broadcast with constant probability. Because of global isolation, we can consider R
to be a fat region in the terminology of the MIS algorithm. We can apply the same style
of argument as in Lemmas 8.6 and 8.8, to prove that, w.c.p., there will be a single channel
with a single broadcaster, and this channel will include a constant number of receivers.
These receivers will then go on to successfully report to u w.c.p. in the next round.

It follows that O(log n) rounds are sufficient to ensure u receives the new information
with high probability.

We are now ready to pull together the pieces and prove our main theorem. In the
following, when we say we construct a CDS within t rounds, we mean within t rounds of
the last node being activated. A slightly more general statement of this theorem would
note that we build a CDS on connected subgraph G′ within t rounds of the last node in
G′ being activated.

Theorem 9.6. W.h.p., a constant-degree connected dominating set can be constructed in

O
( log2 n
F
)

+ Õ(log n) rounds.

Proof. Once all relevant nodes are activated, all nodes have moved on to the CDS stage

within O
( log2 n
F
)

+ Õ(log n) rounds. Within an additional O(log n) rounds, all non-MIS
nodes have heard from all neighboring MIS nodes (by Lemma 9.2). At this point, fix any
pair of MIS nodes v and w that are two hops away. They have at least one common
neighbor u. By Lemma 9.5, w.h.p., u will report the existence of v to w (and vice versa)
within O(log n) additional rounds. If v and w are instead three hops away, then Lemma 9.4
combined with Lemma 9.5 provides that, w.h.p., they will learn about each other within

O
( log2 n
F
)

+ Õ(log n) rounds. Therefore, within O
( log2 n
F
)

+ Õ(log n) rounds, all MIS nodes
within 3 hops will have learned of each other. A final application of Lemma 9.2 tells us
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that O(log n) additional rounds ensures that the connecting paths chosen by these MIS
nodes have been propagated to the nodes on the paths. At this point, every MIS node,
and a short path between every nearby pair of MIS nodes, has joined the MIS. By our
earlier argument (also made in [8]), the result is a constant-degree connected dominating
set. If we choose sufficiently large constants for the high probability results above, then the
polynomially many union bounds required to combine them leaves us with a probability
that is still sufficiently high.

9.2 Other Problems

In this section, we use our MIS algorithm solution as a building block in solving other
problems efficiently in the multichannel environment. Our main technical result is a new
algorithm that uses the MIS solution as a subroutine to build a constant-degree connected

dominating set (CDS) in O
( log2 n
F
)

+ Õ(log n) rounds. We then use this structure as an

overlay to derive solutions to broadcast and leader election that run in O
(
D + log2 n

F
)

+

Õ(log n) rounds, and to k-message multi-message broadcast that runs in O
(
D+k+ log2 n

F
)
+

Õ(log n) andO
(
D+k log n+ log2 n

F
)
+Õ(log n) rounds for unrestricted and restricted message

sizes, respectively.
The problems below use a CDS as an overlay network. To best match the typical as-
sumptions for these problems, we will assume synchronous starts—i.e., the CDS algorithm
starts and ends at the same rounds for all nodes. Our algorithms all work without this
assumption as well, requiring in this case only that the theorem statements be rewritten
to guarantee their running time holds after the first round in which a complete CDS is
constructed.

Broadcast. First, build a constant-degree CDS using the above algorithm. Then, the
source delivers the message to its CDS neighbors. On receiving the message, a CDS node
re-broadcasts it with constant probability in each round. Because the CDS nodes have
constant degree, a standard Chernoff analysis shows that, w.h.p., the message will reach
every CDS node in O(D + log n) rounds (and therefore every node within O(log n) more
rounds). Combined with the running time of the CDS algorithm, the total running time is

O
(
D+ log2 n

F
)

+ Õ(log n) rounds, nearly reaching the Ω
(
D+ log2 n

F
)

centralized lower bound
for the multi-channel setting [17]. Formally:

Theorem 9.7. W.h.p., the problem of global broadcast can be solved in O
(
D + log2 n

F
)

+

Õ(log n) rounds.

Multi-Message Broadcast. The k-message multi-message broadcast problem assumes
k messages must be propagated to the entire network. As before, first build a constant-
degree CDS. We then use the same logic as the report phase of the CDS algorithm to
propagate the k messages from their sources to nearby CDS nodes. This routine uses
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log n channels and, w.h.p., can deliver all k messages to nearby nodes in O(k + log n)
rounds. Once the messages are in the CDS, how we propagate depends on our assumption
on message size. For unrestricted message size, we can run the above simple broadcast
algorithm, simply combining all messages a node has received into a single message, in
each round. This requires O(D + log n) rounds to propagate all k once we have our CDS.
If we assume restricted message size (i.e., O(polylog n) bits), we can use the algorithm and
analysis of [22]. As established in [22], this will require O(D + k log n) rounds (formally,
Fprog in the relevant theorem is O(1) while Fack is in O(log n)). From this we conclude:

Theorem 9.8. W.h.p., it is possible to solve k-message multi-message broadcast in time

O
(
D + k + log2 n

F
)

+ Õ(log n) with unrestricted messages sizes, and in O
(
D + k log n +

log2 n
F
)

+ Õ(log n) rounds with restricted message sizes.

Leader Election. To elect a leader, run the broadcast algorithm with all nodes initiat-
ing broadcast with a message containing their own ID, and having each node update its
broadcast message in each round to include the largest ID it has received so far. Using
a standard Chernoff analysis, we can show that the largest ID will propagate to all nodes
within O(D + log n) rounds. Formally:

Theorem 9.9. W.h.p., leader election can be solved in O
(
D + log2 n

F
)

+ Õ(log n) rounds.
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A Properties of Graphs with Bounded Independence

For the analysis of our algorithms in the bounded independence graph model, we require
the followin general statements about the independence number of graphs. As we are not
aware of any reference where they appear, we give full proofs. The first lemma can be seen
as a weighted version of Turán’s theorem.

Lemma A.1. Let G = (V,E) be a graph and assume that every node u ∈ V has a positive
edge weight wu > 0. Define W :=

∑
v∈V wv and for each u ∈ V , Wu :=

∑
v∈N+

G (u)wv. It

then holds that ∑
v∈V

wv
Wv
≤ α(G) and (8)

∑
v∈V

wv ·Wv ≥
W 2

α(G)
, (9)

where α(G) is the independence number of G.

Proof. We adapt the well-known probabilistic proof of Turán’s theorem [4]. Given a global
order on the node set V , we can construct an independent set S of G as follows. We start
with an empty set and consider the vertices in the given order. When considering a node
v ∈ V , we add v to S iff no neighbor of v is already added to S. We randomly order
the vertices as follows. The first node in the order is chosen randomly with probability
proportional to the weights wv, i.e., node v is chosen with probability wv

W . All subsequent
vertices in the random order are again chosen randomly from the remaining set of vertices
with probability proportional to wv. Let S be the independent set obtained by this random
process.

A sufficient condition for node v to be in S is that v appears in the constructed random
order before any of its neighbors. The probability for this to happen is exactly wv

Wv
. The

expected size of S can therefore be estimated as follows:

E[|S|]
(*)

≥
∑
v∈V

wv
Wv

= W ·
∑
v∈V

wv
W

Wv

(**)

≥ W · 1∑
v∈V

wv
W ·Wv

=
W 2∑

v∈V wv ·Wv
. (10)

As there exists an independent set of size at least E[|S|], we clearly have α(G) ≥ E[|S|]
and thus (*) proves (8). The inequality (**) follows from the convexity of the function 1

x .
That, together with α(G) ≥ E[|S|], proves (9).

Note that by choosing wv = 1 for all v ∈ V and if we denote the average degree of G
by d̄, the statement of Lemma A.1 simplifies to∑

v∈V

1

deg(v)
≤ α(G) and d̄+ 1 ≥ n

α(G)
,
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which is equivalent to Turán’s theorem.
As a consequence of Lemma A.1, we obtain the following lemma.

Lemma A.2. Let G = (V,E) be a graph and assume that every node u ∈ V has a positive
edge weight wu > 0. Define W :=

∑
v∈V wv and for each u ∈ V , Wu :=

∑
v∈N+

G (u)wv. Let

Vheavy ⊆ V be the set of nodes v for which Wv ≥ W
2α(G) . The total weight of node in Vheavy

is at least ∑
v∈Vheavy

wv >
W

2α(G)
.

Proof. We define Vlight := V \ Vheavy . Note that therefore for all v ∈ Vlight , Wv <
W

2α(G) .
Summing up wvWv for nodes in Vlight thus yields

∑
v∈Vlight

wv ·Wv <
∑

v∈Vlight

wv ·
W

2α(G)
≤ W 2

2α(G)
. (11)

For nodes in Vheavy , we then get∑
v∈Vheavy

wv ≥ 1

W
·
∑

v∈Vheavy

wvWv

=
1

W
·

∑
v∈V

wvWv −
∑

v∈Vlight

wvWv


Eq. (11)
>

1

W
·

(∑
v∈V

wvWv −
W 2

2α(G)

)
Lem. A.1
≥ W

2α(G)
,

which concludes the proof.

By choosing wv = 1 for all nodes, we directly obtain the following corollary.

Corollary A.3. More than n
2α(G) nodes of an n-node graph G with independence number

α(G) have degree at least n
2α(G) + 1.

B Low Number of Channels

In this section we shortly describe how to adapt the algorithm to work with o(log log n)
channels. The decay filter stays unchanged (low number of channels imply long phases),
the only problems arise in the herald filter, as we need Θ(log log n) herald election channels
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and loneliness support channels. Let m := max{nA, nS} = Θ(log log n). We will use F4
channels for each of those two groups of channels and the remaining F2 channels to cover

the other channels needed. We define c := 2
4m
F and use c as the base for the exponential

distributions, i.e., for herald election nodes choose channel Ai with probability c−i and in
the loneliness support block nodes broadcast with probability c−i if they choose channel
Si. The following lemmas have to be adjusted. Lemma 8.8 no longer provides a pair
with probability Ω(π`), but with probability Ω

(F
m · π`

)
. Lemma 8.16 now guarantees the

creation of an MIS node within O
(
m
F · log n

)
rounds instead of O(log n) rounds. The chain

of reasoning in all proofs remains, only the calculations have to be adjusted.
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