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Abstract

An increasing amount of attention is being turned toward the study of distributed algo-
rithms in wireless network models based on calculations of the signal to noise and interference
ratio (SINR). In this paper we introduce the ad hoc SINR model, which, we argue, reduces the
gap between theory results and real world deployment. We then use it to study upper and lower
bounds for the canonical problem of broadcast on the graph induced by both strong and weak
links. For strong connectivity broadcast, we present a new randomized algorithm that solves
the problem inO(D log (n)polylog(R)) rounds in networks of size n, with link graph diameter
D, and a ratio between longest and shortest links bounded byR. We then show that for back-off
style algorithms (a common type of algorithm where nodes do not explicitly coordinate with
each other) and compact networks (a practice-motivated model variant that treats the distance
from very close nodes as equivalent), there exist networks in which centralized algorithms can
solve broadcast in O(1) rounds, but distributed solutions require Ω(n) rounds. We then turn
our attention to weak connectivity broadcast, where we show a similar Ω(n) lower bound for
all types of algorithms, which we (nearly) match with a back-off style O(n log2 n)-round up-
per bound. Our broadcast algorithms are the first known for SINR-style models that do not
assume synchronous starts, as well as the first known not to depend on power control, tunable
carrier sensing, geographic information and/or exact knowledge of network parameters.

1 Introduction

In this paper, we study distributed broadcast in wireless networks. We model this setting using an
SINR-style model; i.e., communication behavior is determined by the ratio of signal to noise and
interference [5, 7–10, 14, 16, 18, 20]. While we are not the first to study broadcast in an SINR-style
model (see related work below), we are the first to do so under a specific set of assumptions which
we call the ad hoc SINR model. It generalizes the SINR-style models previously used to study
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broadcast by eliminating or reducing assumptions that might conflict with real networks, includ-
ing, notably, idealized uniform signal propagation and knowledge of exact network parameters or
geographic information. In this setting, we produce new efficient broadcast upper bounds as well
as new lower bounds that prove key limitations. In the remainder of this section, we detail and
motivate our model, then describe our results and compare them to existing work.

The Ad Hoc SINR Model. In recent years, increasing attention has been turned toward study-
ing distributed wireless algorithms in SINR-style models which determine receive behavior with
an SINR formula (see Section 2) that calculates, for a given sender/receiver pair, the ratio of sig-
nal to interference and noise at the receiver. These models differ in the assumptions they make
about aspects including the definition of distance, knowledge of network parameters, and power
control constraints. In this paper we study an SINR-style model with a collection of assumptions
that we collectively call the ad hoc SINR model, previously studied (however not named yet) e.g.
in [6]. Our goal with this model is to capture the key characteristic of wireless communication
while avoiding assumptions that might impede the translation of theoretical results into practical
algorithms. The ad hoc SINR model is formally defined in Section 2, but we begin by summarizing
and motivating it below.

We start by noting that a key parameter in the SINR formula is the distance between nodes.
Distance provides the independent variable in determining signal degradation between a trans-
mitter and receiver. In the ad hoc SINR model, we do not assume that distance is necessarily
determined by Euclidean geometry. We instead assume only that the distances form a metric in a
“growth-bounded metric space”—describing, in some sense, an effective distance between nodes
that captures both path loss and attenuation. Crucially, we assume this distance function is a pri-
ori unknown—preventing algorithms that depend on advance exact knowledge of how signals will
propagate.

Another key assumption in the definition of an SINR-style model is the nodes’ knowledge of
network parameters. In the ad hoc SINR model, we assume nodes do not know the precise value of
the parameters associated with the SINR formula (i.e., α, β,N ), but instead know only reasonable
upper and lower bounds for the parameters (i.e., αmin, αmax, βmin, βmax, Nmin, Nmax). This
assumption is motivated by practice where ranges for these parameters are well-established, but
specific values change from network to network and are non-trivial to measure.1 We also assume
that nodes only know a polynomial upper bound on the relevant deployment parameters—namely,
network size and density disparity (ratio between longest and shortest links).

Finally, we assume that all nodes use the same fixed constant power. This assumption is mo-
tivated by the reality that power control varies widely from device to device, with some chipsets
not allowing it at all, while others use significantly different granularities. To produce algorithms

1In addition to keeping the specific values unknown, it might be interesting to allow them to vary over time in
the range; e.g., an idea first proposed and investigated in [9]. The difficulty of defining such dynamic models lies in
introducing the dynamic behavior without subverting tractability. This is undoubtedly an intriguing direction for future
exploration.
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that are widely deployable it is easiest to simply assume that nodes are provided some unknown
uniform power.

Results. The global broadcast problem provides a source with a broadcast message M , which it
must propagate to all reachable nodes in the network. We study this problem under the two standard
definitions of reachable for an SINR-style setting: weak and strong. In more detail, let dmax be the
largest possible distance such that two nodes u and v can communicate (i.e., the largest distance
such that if u broadcasts alone in the entire network, v receives its message). A link between u
and v is considered weak if their distance is no more than dmax, and strong if their distance is no
more than dmax

1+ρ , where ρ = O(1) is a constant parameter of the problem. Weak (resp. strong)
connectivity broadcast requires the source to propagate the message to all nodes in its connected
component in the graph induced by weak (resp. strong) links.

Existing work on broadcast in SINR-style models focuses on strong connectivity. With this
in mind, we begin, in Section 4, with our main result: a new strong connectivity broadcast algo-
rithm that terminates in O(D log n logαmax+1(Rs)) rounds with high probability,where D is the
diameter of the strong link graph, αmax = α + O(1) is an SINR model parameter, and Rs is the
maximum ratio between strong link lengths. Notice, in most practical networks, Rs is polynomial
in n,2 leading to a result that is in O(D polylog(n)). This is also, to the best of our knowledge,
the first broadcast algorithm for an SINR-style model that does not assume synchronous starts.
It instead requires nodes to receive the broadcast message first before transmitting—a practical
and common assumption, that prevents nodes from needing advance knowledge of exactly when
broadcast messages will enter the system.

We then continue with lower bounds for strong connectivity broadcast. In the graph-based
models of wireless networks, the best known broadcast solutions are back-off style algorithms [2,
4, 11], in which a node’s decision to broadcast depends only on the current round and the round in
which it first received the broadcast message. These algorithms are appealing due to their simplicity
and ease of implementation. In this paper, we prove that back-off style algorithms are inherently
inefficient for solving strong connectivity broadcast. In more detail, we prove that there exist
networks in which a centralized algorithm can solve broadcast in a constant number of rounds, but
any back-off style algorithm requires Ω(n) rounds. This result opens a clear separation between
the graph and SINR-style models with respect to this problem.

We also prove an Ω(n) bound on a compact version of our model that allows arbitrarily large
groups of nodes to occupy the same position. We introduce this assumption to explore a reality of
many real networks: when you pack devices close enough, the differences between received signal
strength fall below the detection granularity of the radio hardware, which experiences the signal
strength of these nearby devices as if they were all traveling the same distance. This bound empha-
sizes an intriguing negative reality: efficient broadcast in SINR-style models depends strongly, in

2There are theoretically possible networks, like the exponential line, in which Rs is exponential in n, but as n grows
beyond a small value, those networks become impossible to realize in practice. E.g., to deploy an exponential line
consisting of ∼ 45 nodes, with a maximum transmission range of 100m, the network would have to include pairs of
devices separated by a distance less than the width of a single atom.
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some sense, on the theoretical conceit that the ratio between distances is all that matters, regardless
of how small the actual magnitude of these distance values is.

We conclude by turning our attention to weak connectivity broadcast. To the best of our knowl-
edge, we are the first to concretely consider this version of broadcast. We formalize the intuitive
difficulty of this setting by proving the existence of networks where centralized algorithms can
solve broadcast in O(1) rounds, while any distributed algorithm requires Ω(n) rounds. We then
match this bound (within log2 n factors) by showing that the back-off style upper bound we first
presented in our study of the dual graph model [12] not only solves weak connectivity broadcast
in O(n log2 n) rounds in the ad hoc SINR model, but also does so in essentially every reasonable
model of a wireless network.

Related Work. The theoretical study of SINR-style models began by focusing on centralized
algorithms meant to bound the fundamental capabilities of the setting; e.g., [5, 7, 10, 14, 16]. More
recently, attention has turned toward studying distributed algorithms, which we discuss here. In the
following, n is the network size, D is the diameter of the strong link graph, and ∆ is the maximum
degree in the weak link graph. Randomized results are assumed to hold with high probability.

We begin by summarizing existing work on distributed strong connectivity broadcast in SINR-
style models. There exist several interesting strategies for efficiently performing strong connectiv-
ity broadcast. In more detail, in the randomized setting, Scheideler et al. [18] show how to solve
strong connectivity broadcast inO(D+log n) rounds, while Yu et al. [20] present aO(D+log2 n)
round solution. In the deterministic setting, Jurdzinski et al. [8] describe a O(∆ polylog(n) + D)
solution, which they recently improved toO(D log2 n) (under different assumptions) [9]. However,
all of these above solutions make strong assumptions on the knowledge and capability of devices,
which are forbidden by the ad hoc SINR model. In particular, all four results leverage knowledge
of the exact network parameters (though in [18] it is noted that estimates are likely sufficient), and
assume that all nodes begin during round 1 (allowing them to build an overlay structure on which
the message is then propagated). In addition, [18] makes use of tunable collision detection, [20]
allows the algorithm to specify the transmission power level as a function of the network parame-
ters, [8] adds an additional model restriction that forbids communication over weak links,3 and [9]
heavily leverages the assumption that nodes know their positions in Euclidean space and the ex-
act network parameters, and can therefore place themselves and their neighbors in a precomputed
overlay grid with nice properties.

A problem closely related to (global) broadcast is local broadcast, which requires a set of
senders to deliver a message to all neighbors in the strong link graph. This problem is well-studied
in SINR-style models and the best known results are of the form O(∆ log n) [6, 21]. Of these
results, the algorithm in [6] by Halldorsson et al. is the most relevant to our work as it deploys
an elegant randomized strategy that can be easily adapted to the ad hoc SINR model. Using this

3In slightly more detail, their model forbids v from receiving a message from u if u is too far away, even if the SINR
of the transmission is above β. This restriction makes it easier to build a useful dominating set because it eliminates the
chance that you are dominated by a weakly connected neighbor.
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local broadcast algorithm as a building block yields a solution for (global) broadcast that runs in
O(∆D log n) time. In our work, we avoid dependency on the degree of the underlying link graph
as we only need to propagate a single message.

In the classical graph-based wireless network model, for distributed broadcast there is a tight
bound of Θ

(
(D + log n) log n

D

)
rounds, if nodes start asynchronously (like in this paper) [1, 2,

4, 11, 13, 17]. For the easier case where all nodes start at the same time, it is currently unknown
whether or not better bounds are possible in general graphs, but in unit disk graphs a solution of
the form O(D + log2 n) is likely possible.4

2 Model

We study the ad hoc SINR model, which describes a network consisting of a set of nodes V de-
ployed in a metric space and communicating via radios. We assume time is divided into syn-
chronous rounds and in each round a node can decide to either transmit or listen. We determine
the outcome of these communication decisions by the standard SINR formula, which dictates that
v ∈ V receives a message transmitted by u ∈ V , in a round where the nodes in I ⊆ V \ {u, v}
also transmit, if and only if v is listening and

SINR(u, v, I) =

Pu
d(u,v)α

N +
∑

w∈I
Pw

d(w,v)α

≥ β,

where Px is the transmission power of node x, d is the distance formula for the underlying metric
space, and α ∈ [αmin, αmax], β ∈ [1, βmax], and N ∈ [0, Nmax], where αmax, βmax and Nmax

are constants.
In this paper, we assume that:
(1) Algorithms are distributed.
(2) All nodes use the same constant power P .
(3) Nodes do not have advance knowledge of their locations, distances to other nodes, or the

specific values of the network parameters α, N , and β, though they do know the range of
values from which α, N , and β are chosen. In addition, nodes only know a polynomial upper
bound on the standard deployment parameters: the network size (|V | = n) and the density
(ratio of longest to shortest link distance).

(4) Nodes are embedded in a general metric space with a distance function d that satisfies the
following property: for every v ∈ S ⊆ V and constant c ≥ 1, the number of nodes in S within
distance c · dmin(S) of v is in O(cδ), where dmin(S) := minu,u′∈V {d(u, u′)} is the minimum
distance between two nodes in S and δ < αmin is a fixed constant roughly characterizing a
dimension of the metric space.5

4The result of [15] can build a maximal independent set in the UDG graph model in O(log2 n) rounds. Once this
set is established under these constraints, an additional O(log2 n) rounds should be enough to build a constant-degree
overlay—e.g., as in [3]—on which broadcast can be solved in an additional O(D + logn) rounds.

5Notice, for δ = 2 the model strictly generalizes the Euclidean plane. We prefer this general notion of distance over
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In this paper, to achieve the strongest possible results, we prove our upper bounds with respect to
this general metric, and our lower bounds with respect to the restricted (i.e., easier for algorithms)
two-dimensional Euclidean instantiation.

Compact Networks. The SINR equation is undefined if it includes the distance 0. As motivated
in the introduction, a natural question is to ask what happens as distances become effectively 0 (e.g.,
when nodes come too close for the difference in their signal strength to be detectable). To study
this case, we define the compact ad hoc SINR model, which allows zero-distances and specifies that
whenever SINR(u, v, I) is therefore undefined, we determine receive behavior with the following
rule: v receives u’s message if and only if u is the only node in I ∪ {u} such that d(u, v) = 0. We
formalize the impact of this assumption in our lower bound in Section 5.1.

3 Problem & Preliminaries

In this section we define the problems we study in this paper and then introduce some preliminary
results that will aid our bounds in the sections that follow.

The Broadcast Problem. In the broadcast problem, a designated source must propagate a mes-
sage M to every reachable node in the network. Let rw :=

(
P
βN

)1/α be the maximum distance at
which any two nodes can communicate. Let rs := rw

1+ρ , for some known constant ρ > 0. Fix a
set of nodes and a distance metric. We define E[`], for some distance ` ≥ 0, to be the set of all
pairs {u, v} ⊆ V such that d(u, v) ≤ `. When defining broadcast, we consider both the weak con-
nectivity graph Gw = (V,E[rw]) and the strong connectivity graph Gs = (V,E[rs]). The values
Rw = max{u,v},{x,y}∈E[rw]

{d(u,v)
d(x,y)

}
and Rs = max{u,v},{x,y}∈E[rs]

{d(u,v)
d(x,y)

}
capture the diversity

of link lengths in the connectivity graphs. For most networks, you can assume this value to be
polynomial in n, though there are certain malformed cases, such as an exponential line, where the
value can be larger. A subset S ⊆ V of the nodes is called a maximal independent set (MIS), if any
two nodes u, v ∈ S are independent, i.e., {u, v} /∈ E, and if all nodes v ∈ V are covered by some
node in s ∈ S, i.e., ∀v ∈ V : ∃s ∈ S : v ∈ N(s) ∪ {s}, where N(s) is the set of neighbors of s.

In weak connectivity broadcast the source is required to propagate its message to all nodes in
its connected component in Gw, while in strong connectivity broadcast the source is required only
to propagate the message to all nodes in its component in Gs. In this paper, we are interested in
randomized solutions to both broadcast problems. In particular, we say algorithmA solves weak or
strong connectivity broadcast in a given number of rounds if it solves the problem in this time with
high probability (w.h.p.); i.e., with probability at least 1− 1/nc, for an arbitrary constant c > 0.

We assume nodes remain inactive (i.e., they do not transmit) until they receive the broadcast
message for the first time, at which point they become active. We say that a given network is

standard Euclidean distance as it can capture power degradation due to both path loss and attenuation (a link-specific
loss of power due to the materials through which the signal travels).
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T -broadcastable with respect to strong or weak connectivity, if there exists a T -round schedule of
transmissions that solves the relevant broadcast problem. And finally, we say a broadcast algorithm
is a back-off style algorithm if nodes base their broadcast decisions entirely on the current round
and the round in which they first received the broadcast message (which is round 0 for the source).

The (x, y)-Hitting Game. Our lower bound arguments in this paper deploy the high-level strat-
egy of proving that solving the relevant type of broadcast is at least as hard as solving an eas-
ily bounded combinatorial game we call (x, y)-hitting. This game is defined for two integers,
0 < x ≤ y. The game begins with an adversary choosing some arbitrary target set T ⊆ [y] where
|T | = x. The game then proceeds in rounds. In each round the player, modeled as a probabilistic
automaton P , guesses a value w ∈ [y]. If w ∈ T the player wins (he hits T ). Otherwise it moves
on to the next round. It is easy to see that for small x the game takes a long time to solve with
reasonable probability (we refer to Appendix A for the proof):

Theorem 3.1. Let P be a player that solves the (x, y)-hitting game in f(x, y) rounds, in expecta-
tion. It follows that f(x, y) = Ω

( y
x

)
.

4 Strong Connectivity Broadcast

In this section, we present STRONGCAST, an algorithm that solves strong connectivity broadcast
in the ad hoc SINR model. We prove the following:

Theorem 4.1. The STRONGCAST algorithm solves strong connectivity broadcast in the ad hoc
SINR model in O(D(logαmax+1Rs)(log n)) rounds.

For most practical networks, Rs is polynomial in n, reducing the above result to O(D polylog(n)).
In some malformed networks, however,Rs can be as large as exponential in n. Because we assume
the ad hoc SINR model, our algorithm leverages no advanced knowledge of the distance metric
and uses only the provided constant upper bounds on α and β, and the polynomial upper bounds
on n and Rs. To avoid the introduction of extra notation, we use the exact values of n and Rs
in our analysis as those terms show up only within log factors in big-O notation; for simplicity
of presenting the protocol, we also assume that Rs grows at least logarithmic in n, i.e., Rs =
Ω(log n),6 and in the proof of Theorem 4.1 we show how to solve the problem for slowly growing
or even constant Rs.

Algorithm Overview. The STRONGCAST algorithm consists of at most D epochs. In each
epoch, the broadcast message is propagated at least one hop further along all shortest paths from
the source. In more detail, at the beginning of each epoch, we say a node is active with respect
to that epoch if it has previously received the message and it has not yet terminated. During each
epoch, the active nodes for the epoch execute a sub-protocol we call neighborhood dissemination

6In fact, it is sufficient to assume logαmax Rs = Ω(log? n).
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while inactive nodes remain silent. Let S be the set of active nodes for a given epoch. The goal of
neighborhood dissemination is to propagate the broadcast message to every node in N(S), where
N is the neighbor function over the strong connectivity graph Gs. (Notice that the high-level
structure of our algorithm is the same as seen in the classical results from the graph-based setting;
e.g., our neighborhood dissemination sub-protocol takes the place of the decay sub-protocol in the
canonical broadcast algorithm of Bar-Yehuda et al. [2].)

The neighborhood dissemination sub-protocol divides time into phases. As it progresses from
phase to phase, the number of nodes still competing to broadcast the message decreases. The
key technical difficulty is reducing contention fast enough that heavily contended neighbors of S
receive the message efficiently, but not so fast that some neighbors fail to receive the message
before all nearby nodes in S have terminated. We achieve this balance with a novel strategy in
which nodes in S approximate a subgraph of their “reliable” neighbors, then build an MIS over
this subgraph to determine who remains active and who terminates. We will prove that if a node
u ∈ S neighbors a node v ∈ N(S), and u is covered by an MIS node (and therefore terminates),
the MIS node that covered u must be sufficiently close to v to still help the message progress.

In Section 4.1 we detail a process for constructing a reliable subgraph and analyze its proper-
ties. Then, in Section 4.2 we detail the neighborhood dissemination sub-protocol (which uses the
subgraph process) and analyze the properties it guarantees. We conclude, in Section 4.3, by pulling
together these pieces to prove the main theorem from above.

4.1 SINR-Induced Graphs

The neighborhood dissemination sub-protocol requires active nodes to construct, in a distributed
manner, a subgraph that maintains certain properties. For clarity, we describe and analyze this
process here before continuing in the next section with the description of the full neighborhood
dissemination sub-protocol.

We start by defining graphs Hµ
p [S] which are induced by a node set S, a transmission probabil-

ity p and a reliability parameter µ ∈ (0, p) ∩ Ω(1). Given a set of nodes S, assume that each node
in S independently transmits with probability p. Further, assume that there is no interference from
any node outside the set S. We define Hµ

p [S] to be the undirected graph with node set S and edge
set Eµp [S] such that for any u, v ∈ S, edge {u, v} is in Eµp [S] if and only if both:
(1) u receives a message from v with probability at least µ and
(2) v receives a message from u with probability at least µ.

Computing SINR-Induced Graphs. It is difficult to compute the graphs Hµ
p [S] exactly and

efficiently with a distributed algorithm. However, for given S, p, and µ, there is a simple protocol
to compute a good approximation H̃µ

p [S] for Hµ
p [S] (assuming that the reception probabilities for

nodes in S do not change over time). Formally, we say that an undirected graph H̃µ
p [S] with node

set S is an ε-close approximation of Hµ
p [S] if and only if:

E
[
Hµ
p [S]

]
⊆ E

[
H̃µ
p [S]

]
⊆ E

[
H(1−ε)µ
p [S]

]
.
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An ε-close approximation H̃µ
p [S] of Hµ

p [S] can be computed in time O
( logn
ε2µ

)
as follows. First,

all nodes in S independently transmit their IDs with probability p for T := c logn
ε2µ

rounds (where
the constant c is chosen to be sufficiently large). Each node u creates a list of potential neighbors
containing all nodes from which u receives a message in at least

(
1 − ε

2

)
µT of those T rounds.

For a second iteration of T rounds, each node transmits its list of potential neighbors (as before,
by independently transmitting with probability p). At the end, node u adds node v as a neighbor
in H̃µ

p [S] if and only if v is in u’s list of potential neighbors and u receives a message from v
indicating that u is in v’s list of potential neighbors as well.

Lemma 4.2. W.h.p., the SINR-Induced Graph Computation protocol runs in O
( logn
ε2µ

)
rounds and

returns a graph H̃µ
p [S] that is an ε-close approximation of Hµ

p [S].

Proof. Let T = c
ε2µ

log n for some yet to be defined c. Let Xi be 1, if node u receives a message

in round i from node v, and thus X =
∑T

i=1Xi is the random variable that counts the number of
messages u receives in total from v. Let the probability of a successful transmission be µ′.

First let µ′ ≥ µ. Using Chernoff we find that

P
(
X ≤

(
1− ε

2

)
µT
)
≤ P

(
X ≤

(
1− ε

2

)
µ′T
)
≤ e−

ε2

12
µ′T ≤ n−

c
12 .

For µ′ ≤ (1− ε)µ a similar argumentation gives us P
(
X ≥

(
1− ε

2

)
µT
)
≤ n−

c
12 .

Choosing c a large enough constant and using a union bound over all nodes, w.h.p., all nodes
v that transmit with probability at least µ, are connected to u in H̃µ

p [S], while no nodes with trans-
mission probability less than (1 − ε)µ are, proving E

[
Hµ
p [S]

]
⊆ E

[
H̃µ
p [S]

]
⊆ E

[
H

(1−ε)µ
p [S]

]
.

In the second part of the protocol, for establishing a bidirectional link between two nodes, they
must only successfully transmit a single message to each other, which is clearly more likely than
transmitting

(
1− ε

2

)
µT messages, thus, it can be included in the union bound above.

Properties of SINR-Induced Graphs. In addition to the fact that nodes in an SINR-induced
graph can communicate reliably with each other, we point out two other properties. First, we
remark that the maximum degree of Hµ

p [S] is bounded by 1/µ = O(1), because in a single time
slot, a node u can receive a message from only one other node v. Consequently the second iteration
requires messages of size O

( logn
µ

)
= O(log n). Further, as shown by the next lemma, for suitable

µ, the graph Hµ
p [S] contains (at least) all the edges that are very short.

Lemma 4.3. ∀p ∈
(
0, 1

2

]
, ∃µ ∈ (0, p) such that: Let dmin ≤ rs be the shortest distance between

any two nodes in S. Then the graph Hµ
p [S] contains all edges between pairs u, v ∈ S for which

d(u, v) ≤ min {2dmin, rs}.

Proof. We restrict our attention to the case dmin ≤ rs/2. If the minimum distance is between rs/2
and rs, the claim can be shown by a similar, simpler argument.

Consider some node u ∈ S. Due to the underlying metric space in our model, there are at
most O(kδ) nodes in S within distance kdmin of node u. Let v be a node at distance at most 2dmin
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from u. For any constant k0, with probability p(1 − p)O(kδ0) = Ω(p), node v is the only node
transmitting among all the nodes within distance k0dmin from node u. Further, assuming that all
nodes at distance greater than k0dmin transmit, the interference I(u) at u can be bounded from
above by

I(u) ≤
∑

w: d(u,w)≥k0dmin

P

d(u,w)α
≤

∞∑
k=k0

∑
w: 1≤ d(u,w)

kdmin
<1+ 1

k

P

d(u,w)α
(∗)
=

∞∑
k=k0

P

kαdαmin

O
(
δkδ−1

)

=
P

dαmin

O

(
δ

∫ ∞
k0

k−(1+αmin−δ)dk

)
=

P

dαmin

O

(
δ
kδ−αmin

0

αmin − δ

)

Step (∗) stems from bounding | {w : kdmin ≤ d(u,w) < (k + 1)dmin} |, the maximum number of
nodes within a ring of diameter dmin at distance kdmin. If we define the function κ so as to replace
the O-term with κ(k0) = κ(k0, αmin, δ) > 0, which decreases polynomially in k0, then we get for
SINR(u, v, I), where I is the set of all nodes with distance greater than k0dmin:

P
d(u,v)α

N + κ(ko)
P
dαmin

≥
P

(2dmin)α

N + κ(k0) P
dαmin

≥
P
rαs

P
βrαw

+ κ(k0)2αP
rαs

=
β

1
(1+ρ)α + κ(k0)β2α

≥ β

The second inequality follows from N = P
βrαw

and from dmin ≤ rs/2. The last inequality holds for
sufficiently large k0. If we choose µ to be the probability that no more than one node in a ball of
radius k0dmin transmits, then node v can transmit to u with probability µ.

In the above proof, µ depends on the unknown parameter β, so we use βmax as the base for
computing µ. Note also that since Hµ

p [S] ⊆ H̃µ
p [S], the lemma induces the same properties on

H̃µ
p [S] with high probability.

4.2 Neighborhood Dissemination Sub-Protocol

We can now describe the full operation of our neighborhood dissemination sub-protocol (depicted
in Algorithm 1). We assume the sub-protocol is called by a set S ⊂ V of nodes that have a message
M that they are trying to disseminate to all nodes in N(S), where N is the neighbor function over
Gs. Since every node in S has already received the message M , which originated at the source
node s, we can assume that all the nodes in S have been synchronized by s and therefore align their
epoch boundaries and call the sub-protocol during the same round.

The protocol proceeds in phases φ = 1, 2, . . . ,Φ, with Φ = O(logRs). Each phase φ, the
protocol computes a set Sφ, such that S1 = S and for all φ ≥ 2, Sφ ⊂ Sφ−1. The nodes in
Sφ attempt to send M to nodes in N(S), while the remaining “inactive” nodes remain silent.
Each phase is divided into three blocks. In block 1 of phase φ, the nodes compute an ε-close
approximation H̃µ

p [Sφ] of the graph Hµ
p [Sφ] using the SINR-inducted graph computation process
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Algorithm 1 High-level pseudo-code for one epoch of STRONGCAST
Input: n, Rs, αmax, βmax, ε, p
Initialization: Q = Q(p,Rs, αmax) = Θ(logαmax Rs), µ = µ(p, βmax) = Ω(1), Φ = O(logRs), S1 = S

for φ = 1 to Φ do
Compute SINR-induced graph H̃µ

p [Sφ] within O
( logn
ε2µ

)
rounds . Block 1

for O(Q logn) rounds do . Block 2
Each round transmit M with probability p

Q

Compute MIS Sφ+1 on H̃µ
p [Sφ] within O

( logn
ε2µ

log? n
)

rounds . Block 3

described in Section 4.1. We choose µ > 0 appropriately as described in Lemma 4.3, while
ε, p ∈ (0, 1/2) can be chosen freely.7

In block 2, nodes in S attempt to propagate the message to neighbors in N(S). In more detail,
during this block, each node in Sφ transmits M with probability p/Q for Tphase = O(Q log n)
rounds, where Q = Θ(logαmax Rs) has an appropriately large hidden constant.

In block 3, the nodes in Sφ compute the set Sφ+1 by finding a maximal independent set (MIS) of
H̃µ
p [Sφ]. Only the nodes in this set remain in Sφ+1. Notice that building this MIS is straightforward.

This can be accomplished by simulating the reliable message-passing model on our subgraph and
then executing the O(log? n) MIS algorithm from [19] on this simulated network. (This algorithm
requires a growth-bounded property which is, by definition, satisfied by any sub-graph of Gs.)
Turning our attention to the simulation, we note that by the definition of H̃µ

p [Sφ], a single round of
reliable communication on H̃µ

p [Sφ] can be easily simulated by having each node in Sφ transmit with
probability p for O(log n) consecutive ((1− ε)µ-reliable) rounds. Therefore, the MIS construction
takes O(log n log∗ n) rounds.

We now turn our attention to analyzing this protocol. The most technically demanding chore
we face in this analysis is proving the following: If a node u ∈ Sφ has an uninformed neighbor
v ∈ N(S), then either u gets the message to v in block 2, or u remains in Sφ+1, or there is some
w ∈ Sφ+1 that is sufficiently close to v to take u’s place in attempting to get the message to v.

Neighborhood Dissemination Analysis. In the following, we show that for appropriate parame-
ters µ, Q, and Tphase, the described algorithm solves,w.h.p., the neighborhood dissemination prob-
lem for S. We first analyze how the sets Sφ evolve. In the following, let dφ be the minimum
distance between any two nodes in Sφ.

Lemma 4.4. If the constant µ is chosen to be sufficiently small, w.h.p., the minimum distance
between any two nodes in Sφ is at least dφ ≥ 2φ−1 · dmin.

Proof. We prove the claim by induction on φ. First, by the definition of dmin, we clearly have
d1 ≥ 20dmin = dmin. Also, by the definition of an ε-close approximation of Hµ

p [Sφ] and by
Lemma 4.3, for a sufficiently small constant µ, w.h.p., H̃µ

p [Sφ] contains edges between all pairs of
nodes u, v ∈ Sφ at distance d(u, v) ≤ 2dφ. Because Sφ+1 is a maximal independent set of H̃µ

p [Sφ],

7By Lemma 4.3, µ depends on p; thus p could be chosen to maximize µ.
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nodes in Sφ+1 are at distance more than 2dφ and therefore using the induction hypothesis, we get
dφ+1 > 2dφ ≥ 2φdmin.

Next we consider node v that needs the message, and its closest neighbor u in Sφ. We show
that if u and v are sufficiently close, and if the farthest neighbor of u in Sφ is also “sufficiently far”
away, then u can successfully transmit the message to v.

Lemma 4.5. ∀p ∈
(
0, 1

2

]
, ∃Q̂, γ = Θ(1), such that for all Q ≥ Q̂ the following holds. Consider

round r in phase φ where each node in Sφ transmits with probability p
Q the broadcast message M .

Let v ∈ N(S) be some node that needs to receiveM , and let u ∈ Sφ be the closest node to v in Sφ.
Further, let du be the distance between u and its farthest neighbor in H̃µ

p [Sφ]. If d(u, v) ≤
(
1+ ρ

2

)
rs

and du ≥ γQ−1/α · d(u, v), then node v receives M in round r with probability Θ
(

1
Q

)
.

Proof. The lemma states under what conditions in round r of block 2 in phase φ a node v ∈
N(S) \ S can receive the message. The roadmap for this proof is to show that if u is able to
communicate with probability (1 − ε)µ with its farthest neighbor u′ in some round r′ of block 1
in phase φ, using the broadcast probability p, then u must also be able to reach v with probability
Θ(1/Q) in round r of block 2, in which it transmits with probability p/Q. We start with some
notations and continue with a connection between the interference at u and at v. We then analyze
the interference at u created in a ball of radius 2du around u, as well as the remaining interference
coming from outside that ball. Finally, we transfer all the knowledge we gained for round r′ to
round r to conclude the proof.

For a node w ∈ V , let I(w) =
∑

x∈Sφ
P

d(x,w)α , i.e., the amount of interference at node w if
all nodes of Sφ transmit. For round r′, the random variable Xp

x(w) denotes the actual interference
at node w coming from a node x ∈ S (the superscript p indicates the broadcasting probability of
nodes in round r′). The total interference at node w is thus Xp(w) :=

∑
x∈Sφ X

p
x(w). If we only

want to look at the interference stemming from nodes within a subset A ⊆ Sφ, we use IA(w) and
Xp
A(w) respectively. For round r, in which nodes use the broadcasting probability p/Q, we use the

superscript p/Q. Finally, for a set A ⊆ Sφ, we define Ā := Sφ \A.
For any w ∈ Sφ, the triangle inequality implies that d(u,w) ≤ d(u, v) + d(v, w) ≤ 2d(v, w).

By comparing IS′(u) and IS′(v) for an arbitrary set S′ ⊆ Sφ we obtain the following observation:

IS′(u) ≥ 2−αIS′(v). (1)

Let u′ be the farthest neighbor of node u in H̃µ
p [Sφ]. Because H̃µ

p [Sφ] is an ε-close approxima-
tion of Hµ

p [Sφ], we know that H̃µ
p [Sφ] is a subgraph of H(1−ε)µ

p [Sφ] and therefore in round r′, u
receives a message from u′ with probability at least (1− ε)µ.

Let A ⊆ Sφ be the set of nodes at distance at most 2du from u. Note that d(u, u′) = du and
therefore both u and u′ are in A. In round r′, if more than 2α/β = O(1) nodes u′′ ∈ A transmit,
then node u cannot receive a message from u′. Since node u receives a message from u′ with
probability at least (1−ε)µ in round r′, we can conclude that fewer than 2α/β nodes transmit with
at least the same probability.

12



We now bound the interference from nodes outside of A. Using the fact that node u receives a
message from node u′ with constant probability at least (1 − ε)µ allows us to upper bound IĀ(u)
and by (1) also IĀ(v). For node u to be able to receive a message from u′, two things must hold:
(a) P

dαu(N+Xp

Ā
(u))
≥ P

dαu(N+Xp(u)) ≥ β and

(b) u′ transmits and u listens (event Ru,u
′
).

Thus we have:

(1− ε)µ ≤ P(Ru,u
′
) · P

(
Xp
Ā

(u) ≤ P

βdαu
−N

)
≤ p(1− p) · P

(
Xp
Ā

(u) ≤ P

βdαu

)
. (2)

Using Lemma B.1, we can therefore bound Xp
Ā

(u) as

P

(
Xp
Ā

(u) ≤
E[Xp

Ā
(u)]

2

)
= P

(
Xp
Ā

(u) ≤ pIĀ(u)

2

)
≤ e−

p2αdαu
8P
·IĀ(u). (3)

For the sake of contradiction, assume that IĀ(u) > c · P
pβdαu

for c = max
{

2, 16β
2α · ln

p(1−p)
(1−ε)µ

}
.

Combining (2) and (3), we obtain

(1− ε)µ
p(1− p)

(2)

≤ P
(
Xp
Ā

(u) ≤ P

βdαu

)
≤ P

(
Xp
Ā

(u) ≤ cP

2βdαu

)
< P

(
Xp
Ā

(u) ≤ pIĀ(u)

2

)
≤ e−

2αc
16β ,

which is a contradiction to the definition of c. We therefore have IĀ(u) ≤ c · P
pβdαu

.
We now have all tools to show that v receives a message from u in round r, with broadcasting

probabilities p/Q. From the fact that the link {u, u′} ∈ E[H̃µ
p [Sφ]] is reliable, we have seen that

with probability at least (1 − ε)µ fewer than 2α

β nodes in A send in round r′. But then in round
r with the same probability no more than 2α

βQ send within A. Markov’s inequality shows that

P
(
X
p/Q

Ā
(v) < 2 p

QIĀ(v)
)
≥ 1/2. Finally, u sends with probability p/Q. All those events are

independent, thus all of them happen with probability at least (1−ε)µp
2Q = Θ(1/Q). Let us assume

that this is the case. To see that v indeed gets u’s message under those conditions, we check whether
SINR(u, v, I) = Pd(u,v)−α

N+X
p/Q

Ā
(v)+X

p/Q
A

≥ β:
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βd(u, v)α(N +X
p/Q

Ā
(v) +X

p/Q
A )

(∗)
≤ βd(u, v)αN + 2α+1cβP

d(u, v)α

dαu
+ β

∑
w∈A,w sends

P
d(u, v)α

Qd(w, v)α

d(u,v)α≤Q dαu
γα

≤
(

1 +
ρ

2

)α
rαs Nβ +

2α+1cβ
γα

P +
2α

Q
P

(1+ρ)α≥(1+ ρ
2 )
α

+α ρ
2

≤
(

1− αρ

2(1 + ρ)α

)
(1 + ρ)αrαs Nβ +

2α+1cβ
γα

P +
2α

Q̂
P

P=Nβ(1+ρ)αrαs
≤ P + P

(
2α+1cβ
γα

+
2α

Q̂
− αρ

2(1 + ρ)α

)
(∗∗)
≤ P

Inequality (∗) holds due to the assumption that Xp/Q

Ā
(v) < 2IĀ(v)p/Q and (2). Inequality (∗∗)

holds for properly chosen γ = Θ(1) and Q̂ = Θ(2α) = O(logαmax Rs).

4.3 Proof of Theorem 4.1

Proof. We show that neighborhood dissemination needs O
(
(logαmax+1Rs)(log n)

)
rounds and

that, w.h.p., it correctly passes the message by one hop with each epoch. With the diameter of the
strong connectivity graph being D, it suffices to repeat neighborhood dissemination D times in
order to broadcast the message to all nodes in the network.

Let S1 = S be the set of nodes that have the message. We let p and ε be arbitrarily chosen
constants in (0, 1/2) and retrieve value µ from Lemma 4.3 and values γ and Q̂ from Lemma 4.5.
We will fix Q ≥ Q̂ at the end of the proof.

Lemma 4.2 ensures that block 1 of each phase φ is done within O
(

logn
ε2µ

)
rounds and that,

w.h.p., it returns an ε-close approximation H̃µ
p [Sφ] of Hµ

p [Sφ]. The running time of block 2 is
fixed to Tphase = Θ(Q log n). Because the maximum degree in H̃µ

p [Sφ] is upper bounded by
a constant, in block 3 of each phase, we can simulate the MIS algorithm from [19], which runs
in time O(log? n) in a network with reliable links. To simulate this algorithm, we use O(log n)
rounds to guarantee, w.h.p., a transmission over a (1 − ε)µ-reliable link in H̃µ

p [Sφ]. It therefore
takes O(log n log? n) rounds to calculate the active nodes of phase φ+ 1. In total, the running time
of block 2 dominates the running times of block 1 and 3.8

Due to Lemma 4.4, w.h.p., there can be no more than logRs phases. Since the length of each
phase is O (Q log n) = O(logαmax Rs)(log n)), this yields the specified running time. It remains

8Recall that we assumeRs to be at least logarithmic in n. Being a bit more careful, it would also be possible to bring
the time complexity of computing an MIS to O(logn). In order to run a O(log? n)-round distributed algorithm, it is
sufficient if each node u collects the initial states of all nodes in u’s O(log? n)-neighborhood. As we have a bounded
degree graph and we can send a message over each edge with constant probability in each round, this is indeed possible
in O(logn) rounds.
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to be shown that every neighbor of S receives the message by the end of the neighborhood dissem-
ination protocol.

Let v be a node in N(S) \ S. We inductively construct a series of nodes uφ ∈ Sφ, where u1

is the closest node to v in S1 = S. We denote by duφ the distance between uφ and its farthest
neighbor in Sφ. We prove by induction the following claim:

Claim 4.6. W.h.p., either uφ reaches v in phase φ, or d(uφ+1, v) ≤ rs

(
1 + φ ρ

2 logRs

)
.

Clearly, d(u1, v) ≤ rs.
Let φ be any phase. If duφ ≥ γQ−1/αd(uφ, v), then we can apply Lemma 4.5 and we are done,

because uφ sends for Tphase = Θ(Q log n) rounds in block 2, i.e., if we choose the constant in
Tphase large enough, then w.h.p. it reaches v during the execution of block 2. So let this not be
the case and let uφ+1 be the closest neighbor to v in Sφ+1. Due to the MIS construction we have
d(uφ+1, v) ≤ d(uφ, v) + duφ , and therefore

d(uφ+1, v) ≤
(

1 +
γ

Q1/α

)
d(uφ, v) ≤ rs

(
1 + φ

ρ

2 logRs
+

2γ

Q1/α

)
≤ rs

(
1 +

(φ+ 1)ρ

2 logRs

)
The last inequality holds for properly chosen Q = Θ(logαmax Rs), Q ≥ Q̂, proving the claim.

5 Lower Bounds for Strong Connectivity Broadcast

In this section, we present lower bounds for strong connectivity broadcast.

5.1 Lower Bound for Compact Networks

In the compact variant of the ad hoc SINR model (defined in Section 2 and motivated in Section 1)
nodes can formally occupy the same position (have mutual distance of 0), which informally cap-
tures the real world scenario where the difference in strength of signals coming from a group of
nodes packed close enough together are too small to detect, making it seem as if they are all trav-
eling at the same distance. Here we prove this assumption makes efficient broadcast impossible.

Theorem 5.1. Let A be a strong connectivity broadcast algorithm for the compact ad hoc SINR
model. There exists an O(1 + ρ)-broadcastable network in which A requires Ω(n) rounds to solve
broadcast.

Proof. AssumeA guarantees to solve broadcast in f(n) rounds in anyO(1)-broadcastable network
of size n. We show that this same algorithm solves (x, n − 2)-hitting in O(f(n)) rounds, for
some x = O(1). Our theorem statement follows directly from this observation and the result of
Theorem 3.1.

In more detail, we construct a player PA for the (dρ + 1e, n − 2)-hitting game that operates
by simulating an execution of A in an d1 + ρe-broadcastable network. We associate each ui ∈
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V = {u1, . . . , un} with value i in the guessing game and us = un−1 with the source node. In the
simulation, we use the IDs of broadcasting nodes to help generate guesses.

Fix some arbitrary small ε ∈ (0, rs) and let k := d1 + ρe, l := rw + ε and d := l/(k + 1). In
our simulation, we arrange the n nodes in our lower bound network onto one of k + 2 positions,
p0, p1, . . . , pk+1, arranged on a line of length l with uniform spacing d. Note that this network
is k + 1-broadcastable with respect to strong connectivity, because these positions have distance
d = l/(k+ 1) ≤ (rw + rs)(2 +ρ) ≤ rs, and hence there exists a k+ 1-round schedule to broadcast
the message along strong links.

The player simulates A in a network where the broadcast source us := un−1 is at position p0,
un is at position pk+1, and the k nodes corresponding to the k targets (i.e., the set {ui | i ∈ T}) are
arranged on positions p1 to pk, and the rest of the nodes are arranged at position p0 as well. See
Figure 1. Of course, the player does not know the targets in advance, so, in its simulation, it does
not know the positions of all the nodes. We show, however, that its simulation remains consistent
until it wins the hitting game.

rw

d ε

p0 p1 p2 p3 pk pk+1

un

Figure 1: Lower bound for strong connectivity broadcast in the compact ad hoc SINR model

To solve the hitting game, PA does the following. Without loss of generality we can assume
that us broadcasts in round 0, informing all other nodes except un, which is too far to receive the
message. I.e., in round 1, all nodes but un have the message. For a round r of algorithm A let Xr

be the set of broadcasting nodes. PA’s proposal sets for the hitting game and the following simu-
lation of receive behavior among the nodes depends on Xr as follows – we provide explanations
afterward.

(1) If Xr is empty, it creates no proposals and simulates all nodes receiving nothing, and moves
on to round r + 1.

(2) If Xr = {ui}, it proposes i. If it does not win, it simulates all nodes except un and ui itself as
receiving the message.

(3) If 1 < |Xr| ≤ (k + 1)α, then it uses |Xr| rounds of the hitting game to propose the value set
{i | ui ∈ Xr}, one by one, before continuing with round r + 1 of the simulation of A. If no
guess wins, then it simulates no node receiving a message in round r.
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(4) If |Xr| > (k + 1)α, then PA again makes no proposals and simulates no node receiving a
message.

We must establish that this simulation is consistent.
(1) & (2) are trivial.
(3): Note that PAonly continues the simulation if all proposals fail. Which is only the case if all
broadcasters are in p0. Because there are at least 2, there is no node in the network at which the
signal can be stronger than the noise. Thus, the simulation of receive behavior is valid.
(4): Note that any set larger than (k + 1)α includes at least two nodes in p0. Therefore, no node
in p0 can receive a message from any other node, due to the model definition of compact SINR
networks. Any incoming signal for any node outside p0 has signal strength at most Pd−α. The
total interference for any node, however, is at least

|Xr| · P l−α ≥ P (k + 1)α(d(k + 1))−α = Pd−α,

and therefore, no node can decode a message this round and PA’s receive behavior is consistent.

We established, therefore, that until the player wins the hitting game, its simulation is consis-
tent. To solve broadcast, it is a minimal requirement that a node in p1 to pk broadcasts in a round
where in total no more than (k + 1)α nodes broadcast (otherwise, by our analysis above of case
(4), un could not receive the message). In such a round, PAapplies the rules of case 3 and wins
the hitting game. Therefore, if A solves broadcast in f(n) rounds in our simulated network, then
PA solves the hitting game in no more than f(n)(k + 1)α = O(f(n)) rounds. Since ρ = O(1),
Theorem 3.1 states that the (dρ + 1e, n − 2)-hitting game needs Ω(n) rounds to be solved, which
concludes our proof.

5.2 Lower Bound for Back-Off Style Algorithms

In the study of broadcast in graph-based models, the best known algorithms are often back-off
style algorithms (e.g., the canonical solution of Bar-Yehuda et. al. [2]). We prove below that such
algorithms are too simple to solve strong connectivity broadcast efficiently in the SINR setting.

Theorem 5.2. Let A be a back-off style strong connectivity broadcast algorithm for the ad hoc
SINR model. There exists an O(1 + ρ)-broadcastable network in which A requires Ω(n) rounds to
solve broadcast.

Proof. We adopt the same approach as in Theorem 5.1. That is, we show how to implement PA,
a solution to the (x, n− 2)-hitting game, for x = O(1), that simulates A in a special line network
to generate its guesses, solving the hitting game with a time complexity within a constant factor
of the guarantees of A for solving broadcast. The linear bound on hitting from Theorem 3.1 then
provides the needed linear bound on A.

We begin with the same simulated network setup as in Theorem 5.1. Because we no longer
assume the compact assumption we must modify this setup to prevent nodes from occupying the
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same location. In more detail, we take the nodes located at p0 and spread them uniformly on a
second line l0 that passes through p0 perpendicular to the line (p0, pk+1). We make the spacing
between nodes on l0 small enough such that all nodes on the line remain within distance rw of pk
and within distance d := (rw + ε)/(k + 1) ≤ rs of p0. As before, we make us = un−1 the source
and place it on p0. See Figure 2.

l0

rw

d

p1 p2 p3p0 pk pk+1

un

Figure 2: Lower bound for strong connectivity broadcast with back-off style algorithms

Notice, with the nodes near p0 now no longer occupying the same location, correctly simu-
lating receive behavior has become more complex (it is possible, for example, for multiple nodes
assigned to the p0-line to communicate concurrently). Fortunately, the assumption that A is back-
off style frees us of the need for complex receive behavior simulation. Without loss of generality,
us broadcasts alone during round 0 (no node can broadcast until us broadcasts). The player can
simulate all nodes except un receiving this message, as all are within rw distance of us. Moving
forward, there is no need to simulate their receive behavior at all as A is back-off style and they
will ignore all subsequent received messages.

We are left only to specify the guess behavior for the hitting game. In the proof of Theorem 5.1,
we noted that if more than (k + 1)α nodes broadcast, then un cannot receive the message (as the
weakest interference is at least (k + 1)−α times the strongest signal). A similar result holds in our
modified version of this network. We simply need to increase the threshold slightly to (k+ 2)α, as
all nodes on line l0 are within distance d of p0. With this adjusted threshold in mind, we use the
same proposal rule for the hitting game: if no more than (k+ 2)α nodes broadcast, guess each one
by one, then continue the simulation only if no guess wins the game. The rest of the proof follows
as in Theorem 5.1.

6 Weak Connectivity Broadcast

Weak connectivity broadcast seems more difficult than strong connectivity broadcast because it
might require messages to move across weak links (links at distance near rw). When communicat-
ing over such a long distance, it is possible for most other nodes in the network to be interferers—
capable of disrupting the message, but not capable of communicating with the receiver themselves.
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In this section, we formalize this difficulty by proving the existence of a 2-broadcastable net-
work in which all algorithms require Ω(n) rounds to solve weak connectivity broadcast. We then
turn our attention to upper bounds. We reanalyze an algorithm we originally presented in [12],
in the context of the dual graph model, to show that it solves weak connectivity broadcast in the
ad hoc SINR model in O(n log2 n) rounds. To the best of our knowledge, this is the first known
non-trivial weak connectivity broadcast algorithm for an SINR-style model (all previous broadcast
algorithms make stronger assumptions on connectivity). To help underscore the surprising univer-
sality of this algorithm, we prove that not only does it solve broadcast in this time bound in this
model, but that it solves broadcast in O(n log2 n) rounds essentially in every reasonable wireless
model (a notion we formalize below).

6.1 Lower Bound

Our lower bound leverages the same general approach as the lower bounds in Section 5: We reduce
(x, y)-hitting to the relevant broadcast problem, and then apply the bound on hitting from Theo-
rem 3.1. In our reduction, we use a rotating lollipop network, consisting of a circle of n− 1 nodes
with the message and a receiver at distance rw from some unknown bridge node in the circle (and
strictly more distant from all others). To get the message from the circle to the receiver requires
that this bridge node broadcasts alone. We prove that identifying this bridge node is at least as hard
as solving the (1, n− 1)-hitting game, which requires Ω(n) rounds.

Theorem 6.1. LetA be a weak connectivity broadcast algorithm for the ad hoc SINR model. There
exists a 2-broadcastable network in which A requires Ω(n) rounds to solve broadcast.

Proof. Assume A guarantees to solve broadcast in f(n) rounds in any 2-broadcastable network of
size n with at least high probability. We will show that this same algorithm solves (1, n−1)-hitting
inO(f(n)) rounds. Our theorem statement will follow directly from this observation and the result
of Theorem 3.1.

In more detail, we construct a player PA for the (1, n − 1)-hitting game that operates by
simulating A on the rotating lollipop network (see Figure 3), which we define as follows: this
network consists of nodes {u1, . . . , un−1} arranged uniformly on a circle with diameter ≤ rw,
and node un placed at distance rw from ux on the line defined by the center of the circle and the
location of ux, where x is the target in the current instance of the hitting game (i.e., T = {x}). Of
course, PA does not know the identity of ux, but we will show its simulation remains valid until it
wins the hitting game.

In particular, PA simulates A in the rotating lollipop network with u1 as the broadcast source.
In each simulated round r, if exactly one node ui broadcasts, the player guesses i in the hitting
game. If i is not the target, it simulates all nodes in the circle receiving the message and un
receiving nothing. Note that after the first round, if 1 is not the target, all nodes but un have the
message. If more than one node broadcasts, then PA makes no guess and simulates the receive
behavior in the network normally, with un not being able to receive the message. This simulation
remains valid until PA wins the hitting game, because the receive behavior among the nodes in the
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rw

u1

ux un

rw

Figure 3: Rotating lollipop network

circle is the same, regardless of which node ux is the bridge, and un can only receive a message
if only the bridge ux broadcasts, in which case the player wins the hitting game before needing to
simulate the corresponding receive behavior.

To complete the bound, we note that if f(n) = o(n) then PA solves (1, n− 1)-hitting in o(n)
rounds, which contradicts Theorem 3.1.

6.2 Upper Bound

In [12], we described a simple anti-social broadcast algorithm that solved broadcast in the dual
graph model—a variant of the classical graph-based wireless model that includes unreliable links
controlled by an adversary. In this section, we show that this algorithm solves the weakest definition
of broadcast in O(n log2 n) rounds in every “reasonable” wireless network model. The fact that it
does so in the ad hoc SINR model is an immediate corollary.

A Universal Definition of Broadcast. We begin by formalizing our notion of a wireless network
model. In particular, we can define a wireless networkN = (V,M,R) as a 3-tuple, where V is the
non-empty set of nodes in the network, M is the non-empty set of possible messages (that does not
include the special no message indicator, ⊥), and the receive function R : (M ∪ {⊥})|V | → (M ∪
{⊥})|V |, that maps a transmission pattern to a receive pattern (where a pattern is an assignment
of messages—or ⊥ to indicate no message—to the nodes in the network). A wireless network, in
other words, is the formal combination of a particular set of nodes and network topology, with a
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particular network model that defines the communication rules.
For a given wireless network N = (V,M,R), let GI(N ) = (V,E) be the directed isolation

graph where (u, v) ∈ E if and only if v would receive messagem ∈M if u broadcast this message
alone in the network. We can now define the broadcast problem with respect to an arbitrary wireless
network as follows: We say algorithm A solves broadcast in wireless network N if it guarantees,
with high probability (defined w.r.t. |V |), to propagate the broadcast message to all nodes in the
connected component in GI(N ) that contains the broadcast source.

Harmonic Broadcast. We next describe the broadcast algorithm HARMONICCAST, first pre-
sented in [12]. The algorithm works as follows: Let tv be the round in which node v first receives
the broadcast message (if v is the source, tv = 0). Let H be the harmonic series on n, then each
round t ∈ [tv + 1, tv + T ], for T = nd24 lnneH(n), v broadcasts with probability:

pv(t) =
1

1 + d t−tv−1
24 lnn e

.

After these T rounds, the node can terminate. We now establish the (perhaps surprising) universal-
ity of this algorithm.

Theorem 6.2. Let N be a wireless network. The HARMONICCAST algorithm solves broadcast in
N in O(n log2 n) rounds.

Proof. The about results follows immediately from the proof in [12], which assumes pessimisti-
cally (due to the difficulties of the dual graph model) that the message only makes progress in the
network when it is broadcasting alone in the entire network.

Since the isolation graph for a wireless network defined with respect to the SINR equation is
equivalent toG(V,E[rw]), an immediate corollary of the above is that HARMONICCAST algorithm
solves weak connectivity broadcast in the ad hoc SINR model.

Corollary 6.3. The harmonic broadcast algorithm solves weak connectivity broadcast in the ad
hoc SINR model in O(n log2 n) rounds.
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A Proof of Theorem 3.1

Theorem A.1. Let P be a player that solves the (x, y)-hitting game in f(x, y) rounds, in expecta-
tion. It follows that f(x, y) = Ω

( y
x

)
.

Proof. We let the referee choose the set T uniformly at random. In round i + 1, the player can
only make use of the knowledge that its first i guesses were not correct. Thus the probability for
it to hit T in round i + 1 – conditioned that it did not hit T before – is at most x/(y − i). Let Z
be the random variable that counts the number of rounds until the player wins the game and let
k ∈ {1, . . . , y/(x+ 1)}.9 Then we get

P(Z ≥ k) ≥
(

1− x

y

)
· ... ·

(
1− x

y − (k − 2)

)
=

k−2∏
i=0

(
1− x

y − i

) i≤ y
x+1

≥
(

1− x+ 1

y

)k−1

.

We can now bound f(x, y) as follows:

f(x, y) ≥ E[Z] ≥

y
x+1∑
k=1

P(Z ≥ k) ≥
1−

(
1− x+1

y

) y
x+1

1−
(

1− x+1
y

) ≥ 1− e−1

x+1
y

= Ω
(y
x

)
.

B Chernoff Bound Used in Section 4

For completeness, we provide a proof for the following Chernoff bound.

Lemma B.1. LetX1, . . . , Xk be independent random variables such that for each i ∈ [k], P(Xi =
ai) = p and P(Xi = 0) = 1 − p, where ai > 0 and p is a given probability. Further, let
A =

∑k
i=1 ai, â = maxi∈[k] ai, and µ = E[X] = pA, where the random variable X is defined as

X =
∑k

i=1Xi. For any δ > 0, we then have

P(X ≤ (1− δ)µ) ≤ e−
δ2

2
·µ
â = e−

δ2

2
· pA
â .

Proof. Using standard arguments, for any η > 0 and any t ≥ 0, we obtain

P(X ≤ t) ≤ P(eηX ≤ eηt) ≤
E
[
eηX

]
eηt

=

∏k
i=1 E[eηXi ]

eηt

=

∏k
i=1

(
p(eηai − 1)− 1

)
eηt

≤ e
∑k
i=1 p(e

ηai−1)

eηt
≤ e

pA
â

(eηâ−1)−ηt. (4)

9We assume for simplicity that y/(x+ 1) is a natural number.
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The last inequality follows because for all 0 ≤ x ≤ y and all 0 ≤ ε ≤ x, it holds that

(ex − 1) + (ey − 1) =

∞∑
i=1

xi + yi

i!
≤
∞∑
i=1

(x− ε)i + (y + ε)i

i!
= (ex−ε − 1) + (ey+ε − 1).

For t = (1− δ)µ, the expression in (4) is minimized for η = ln(1− δ)/â and we get

P(X ≤ (1− δ)µ) ≤ e
µ
â
·(−δ−(1−δ) ln(1−δ)) =

(
e−δ

(1− δ)1−δ

)µ
â

≤ e−
δ2

2
·µ
â .
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