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Abstract. Recently developed wake-up receivers pose a viable alterna-
tive for duty-cycling in wireless sensor networks. Here, a special radio
signal can wake up close-by nodes. We model the wake-up range by the
unit-disk graph. Such wake-up radio signals are very energy expensive
and limited in range. Therefore, the number of signals must be minimized.
So, we revisit the Connected Dominating Set (CDS) problem for unit-disk
graphs and consider an online variant, where starting from an initial node
all nodes need to be woken up, while the online algorithm knows only
the nodes woken up so far and has no information about the number and
location of the sleeping nodes.
We show that in general this problem cannot be solved effectively, since
a worst-case setting exists where the competitive ratio, i.e. the number
of wake-up signals divided by the size of the minimum CDS, is Θ(n) for
n nodes. For dense random uniform placements, this problem can be
solved within a constant factor competitive ratio with high probability,
i.e. 1− n−c.
For a restricted adversary with a reduced wake-up range of 1 − ε we
present a deterministic wake-up algorithm with a competitive ratio of
O(ε− 1

2 ) for the general problem in two dimensions.
In the case of random placement without any explicit position informa-
tion we present an O(logn)-competitive epidemic algorithm with high
probability to wake up all nodes. Simulations show that a simplified
version of this oblivious online algorithm already produces reasonable
results, that allows its application in the real world.

1 Introduction

Energy is the driving problem of wireless sensor networks (WSNs), since sensor
nodes usually operate for long periods and the only source of energy is battery cells
which are difficult to be exchanged. The functionality of WSNs can be extended
through the use of low power microprocessors, sensors, and radio transceivers.
The availability of low power hardware components provided a technological
break-through of wake-up receivers. These receivers interact only when a special
wake-up signal is addressed to them. When a wake-up signal is received, the
wake-up receiver triggers an interrupt to wake the sensor node. In addition, any
sensor node has the capability of transmitting a wake-up signal to wake up
all other close-by sensor nodes. Recent research [9] has decreased the energy



consumption of sensor nodes when no activity is required to less than 9 µW,
whereas sensor nodes that are not equiped with wake-up receivers who uses duty
cycle would be spending around 51 mW checking the medium from time to time.
Fig 1 shows a sample board of a designed wake-up receiver integrated with a
wireless sensor node.
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Fig. 1. Wireless Sensor Node with Integrated Wake-Up Receiver

Wake-up receivers integrated in sensor nodes constitute a paradigm shift for
wireless sensor protocols. In which, sensor nodes interact with the surrounding
neighbors only when they are required to receive and send information. The duty
cycle process for periodically checking to find out whether messages need to be
received or synchronizing with other sensor nodes may not be required anymore.

Despite that this technology provides a new solution for the energy consump-
tion problem, new problems arise. Sensor nodes are required to produce a wake-up
signal, these signals are energy expensive compared with the signals that are
required for normal data communication. Furthermore, the communication range
of a wake-up signal is smaller than the normal data communication range, which
requires a multi-hop wake-up signals to wake up sensor nodes that are located in
the normal data communication range. Our aim is to minimize the number of
wake-up singals transmitted as much as possible and maximize the covered area
to reduce the energy required to wake up sensor nodes.

A straight-forward solution is to establish minimum set of sensors which
are able to wake up all sensor nodes in case some data need to be collected or
distributed. This is the well known Connected Dominating Set (CDS) problem,
where one tries to compute the Minimum CDS (MCDS). This problem plays an
important role in wireless networks and it is known to be NP-complete.

For simplicity we assume a unit-disk range model and we are interested
in computing the minimum dominating connected set in unit disk graphs, i.e.



geometric graphs where an undirected edge exists between nodes, if their distance
is at most 1.

However, our problem is somehow different. When the sensor nodes are placed,
no positions are known before the first wake-up signal. Also, the nodes may be
moving, sensor nodes may fail, and possible persistent memory might not be
available. All these are reasons to build up a CDS from scratch regularly.

So, we face an online version of the MCDS problem in the context of wake-up
receivers. At the beginning, one sensor node wakes up, e.g. because of new sensor
data. It sends a wake-up signal and receives responses from all next neighbors.
Then, a decision needs to be taken which of the neighbored sensors is allowed to
send the next wake-up signal. Since normal data communication consumes only
little energy compared to the wake-up signal, we can assume that all active nodes
are aware of each other. Furthermore, the information which sensor received
a wake-up signal is available to us, even if the sensor has already been woken
up. The question is now, can we wake up all nodes with minimal number of
wake-up signals. This is what we address as the wake-up minimum connected
dominating set problem in unit disk graphs. In this variant the positions of the
woken up nodes become available as soon as they are awake. For the wake-up
position-aware minimum connected dominating set problem in unit disk graphs
positions are not known at all.

2 Related Work

The new wake-up receivers developed by Gamm et. al. in [9] give us an alternative
to the concept of duty cycles for awaiting incoming messages in wireless sensor
networks.

A perfectly efficient online wake-up would use a minimum connected domi-
nating set of nodes to wake up all the nodes. Finding such a MCDS was already
shown to be NP-hard for general graphs, as well as for unit disc graphs [13, 4].
For the general (non unit-disk graph) problem no polynomial time approximation
exists unless NP ⊆ DTIME[nO(log logn)] [10], yet for MCDS with unit disc graphs
a PTAS has been presented in [3].

Movement of sensor nodes and maintaining an existing MCDS in their presense
was discussed before by Das et al in [5].

Of course the wake-up problem is an online version of MCDS, because of the
differences to the online version presented by Eidenbenz [8] we are referring to it
as the wake-up problem. Eidenbenz models the online problem by node added
every round by an adversary, while the online algorithm has to present a CDS,
but may never remove nodes once added to the CDS. He shows a competitive
ratio of Θ(n) for the CDS size.

Another online MCDS problem closer related to the wake-up problem is
discussed as broadcast problem by Bar-Yehuda et al. [1] and leads to the same
lower bound of Ω(n), so does the reactive routing problem [14]. This motivates
why comparing to an adversary with the same radio range is pointless, as



asymptotically no online algorithm can beat trivial flooding, i.e. using the whole
graph as CDS.

Further research discusses Minimum Routing Cost CDS (MOC-CDS) [6]
which requires the hop distance, between any pair of nodes to be minimal. This
problem is also NP hard, but for the unit disc graph a PTAS exists [7]. A more
generalized version of the problem is called α-MOC-CDS, where the dominating
set must have an α-spanner property additionally. For α = 1 these problems are
the same.

For distributed generation of MCDS approximations are discussed in [15].
Our problem differs, since not all nodes are awake in the beginning, but have
to discover all other nodes from the starting node, leading to different time and
message complexity.

The motivation for proving an algorithm for a dense random network stems
from the requirement for density in a random unit disk graph to guarantee
connectivity of the network [11].

In the position oblivious case we use a push-based epidemic rumor spreading
algorithm with a simple counter mechanism, similar to the one in [12]. Rumor
spreading turns out to be simple and robust. For other applications epidemic
algorithms have been already proposed. For a survey of epidemic algorithms in
wireless sensor networks we refer to the chapter 3, Epidemic Models, Algorithms
and Protocols in Wireless Sensor and Ad-hoc Networks in [2] by Das and Prabib.

3 Preliminaries

We assume that points are in general positions, i.e. that neither three points
are on a line nor four points on a circle in two dimensions. For points in two
dimensions or three dimensions the unit-disk graph (UDG) of a given point set V
is an undirected graph with edge set E := {{u, v} | u, v ∈ V : |u, v| ≤ 1}. Later
on we refer also to UDGs with different radius r.

We consider the following problems.
Definition 1. Given an undirected graph G = (V,E) a connected dominating
set (CDS) S has the following properties
1. S is connected in G, i.e. for all u, v ∈ S there exists a path from u to v in G

using only nodes of S.
2. S is dominating all nodes in V , i.e. for all u ∈ V there exists a node v ∈ S

such that {u, v} ∈ E.

Definition 2. The wake-up position oblivious Minimum Connected Dominating
Set Problem in Unit Disk Graphs (Wake-Up-PO-MCDS-UDG) is to construct a
CDS where the algorithm works in rounds and starts with a node s0.
1. At the beginning only the nodes V1 = {u ∈ V : {u, s0} ∈ E} and edges

E1 = {{u, s0} : u ∈ V1} are known.
2. In round i a node si ∈ V1 may be selected by the algorithm and then the

nodes Vi+1 = {u ∈ V : {u, si} ∈ E} and edges Ei+1 = {{u, si} : u ∈ V1} are
added to the knowledge base of the algorithm.



In the wake-up position-aware minimum connected dominating set problem in
unit disk graphs also the position of the known nodes is available to the algorithm.

4 Lower Bounds

The problem of computing the minimum connected dominating set for unit-disk
graphs (MCD-UD) has been proven to be NP-complete by Lichtenstein [13].
Lower approximation bounds are not known, while the best approximation factor
so far has a bound of 3.8 [16].

For the Wake-up version there is a trivial, but hard computational lower bound
for the competitive ratio, i.e. the number of nodes of a connected dominating set
woken up by an algorithm divided by the number of nodes of the MCDS.

Proposition 1. The competitive ratio of all deterministic algorithms for Wake-
Up-MCD-UD is at least n2−

1
2 . For probabilistic algorithms the expected competitive

ratio is at least n
4 .

Proof. We use a variant of the construction presented in [1, 8, 14], see Fig. 2.
The optimal solution uses wake-up calls from the start node s and the node ui
connected to t. Any deterministic algorithm can be fooled to use n− 1 wake-up
calls of nodes u1, . . . , un−2 such that the final wake up call reaches t.

If the connected node ui is chosen randomly, then any randomized algorithm
needs in the expectation 1 + n−2

2 = n
2 calls to launch a wake-up at ui.

1

s

u1

un-2

t

Fig. 2. Lower Bound Construction with competitive ratio n/2− 1
2

5 Algorithms

While the wake-up problem can not be efficiently solved in general, for high
node density a straight-forward grid based algorithm already achieves constant
approximation ratio.



5.1 A grid-based online algorithm

We partition the area into a grid of a square size of 1√
5 for two dimensions and

1√
6 for three dimensions, see Fig. 3. This grid size guarantees that any node in a

cell can reach all nodes in (orthogonally) neighbored cells with a unit-distance
wake-up call. We assume that each node is aware of its grid position and let
denote cell(u) the grid cell of u.

1p
5

1p
5

1

Fig. 3. Grid construction in two dimen-
sions.

The grid based wake-up algorithm 1 chooses a representative for each cell and
performs a flooding on the grid structure. In particular, it solves the problem if
all grid cells are non-empty. Note that such a m×m grid can be covered only by
a CDS of size of at least ( m√5 − 1)2 = 1

5m
2 − 2√

5m+ 1 in two dimensions, while
the number of nodes who perform wake up calls is bounded by m2. Hence, in a
square we have a competitive ratio of 5 + o(1), and in a cube a competitive ratio
of 6 + o(1) by an analogous calculation.

Algorithm 1: Grid based wake-up algorithm
Send wake up from s
Gdone ← {cell(s)}
Gto-do ← {cell(u) : {u, s} ∈ E} \ {cell(s)}
while Gto-do 6= ∅ do

Pick a node w such that cell(w) ∈ Gto-do
Send wake up from w
Gdone ← Gdone ∪ {cell(w)}
Gto-do ← Gto-do ∪ {cell(u) : {u,w} ∈ E} \ cell(s) \Gdone

end



If enough nodes are placed randomly, then every cell is occupied with high
probability, i.e. 1− n−c for a constant c where c ∈ (0, 1).
Theorem 1. If n nodes are place randomly in a m×m-grid with m ≤

√
n

c lnn
for some constant c. Then the grid based wake-up algorithm computes a CDS
with a constant competitive ratio with high probability, i.e. 1− 1

nc+1 for any c > 1.

Proof. A node is placed in one of the m2 cells with probability 1
m2 ≥ c lnn

n .
Therefore, the chance that it is not placed in a cell is 1− c lnn

n . So, the probability
that a cell is empty can be upperbounded as follows.(

1− c lnn
n

)n
≤ e−c lnn = n−c (1)

We have used (1− 1/m)m ≤ 1/e for m > 0. By the union bound the probability
that any of cell is empty is therefore at most n−c+1. ut

Note that when the node density is decreased only by a constant factor, that
the unit disk graphs becomes disconnected [11] and there is no solution for CDS.

5.2 A competitive algorithm with respect to a weaker adversary
We have seen that for non-randomized placement the wake-up variant cannot
compete with the offline version, which can be seen as an adversary which places
the sleeping nodes in the area outside of the wake up signals. However, if we
compare the wake-up algorithm with a weaker adversary, we can show some
interesting results.

For this we consider two unit-disk graphs with radius 1 and 1− ε for some
ε ∈ (0, 1). The wake-up algorithm solves the wake-up problem for CDS in unit
disk graphs, i.e. with radius 1. We compare its performance to the size of the
minimum connected dominating set of the unit disk graph with radius 1− ε of
the same event. In this way, counter-examples cannot occur as shown in Fig. 2.

Theorem 2. In two dimensions there is a wake-up algorithm which produces at
most O(ε−1/2) more wake-up calls than the number of nodes of the CDS of the
1− ε unit disk graph for ε ∈ (0, 1).

Proof. The key idea is for a node u to cover the two-hop neighborhood of the
1− ε unit disk graph with a set of nodes in the neighborhood of the unit-disk
graph. We prove that the size of this set of this

⌈
32π√
ε

⌉
-coverage boundary set

nodes is bounded by O( 1√
ε
).

Using this observation we use a grid based approach like in [14]. If in two
dimensions we choose the grid size of 1√

2 (1− ε), then any node in a cell of size u
can reach with two hops all nodes which any node of its cell can reach in one
hop, since the diagonal of the cell is 1− ε. So, it suffices to broadcast a message
in a grid, which can be done in constant factor overhead.

It remains to construct the coverage of the two-hop neighborhood of the
1− ε unit disk graphs with O(

√
ε) nodes. For this, we need to investigate some

properties of the two-hop neighborhood.



Algorithm 2: (1− ε) cover two hop wake-up grid algorithm
Send wake up from s
Gdone ← {cell(s)}
Gto-do ← {cell(u) : {u, s} ∈ E} \ {cell(s)}
while Gto-do 6= ∅ do

Pick a node w such that cell(w) ∈ Gto-do
Send wake up from w

Compute the
⌈

32π√
ε

⌉
-coverage boundary set S of the neighbored nodes of w

forall the v ∈ S do
Gdone ← Gdone ∪ {cell(v)}
Gto-do ← Gto-do ∪ {cell(v) : {v, w} ∈ E} \Gdone

end
end

Definition 3. The two-hop covering node set of a unit-disk-graph of radius r
starting with node s is the set of nodes S ⊆ V with the following properties:

1. All nodes of S are within distance r of s.
2. Each node of S is necessary, i.e. for all nodes of u ∈ S there exists a point p

within distance [r, 2r] from s with |u, p| ≤ r and |v, p| > r for all v ∈ S \ {u}.

We call the nodes of S = {c1, . . . , cm} the cover nodes. The outer ring is the
disk of radius 2r without the disk of radius r with center s. The coverage area is
the union of all disks of radius r and center points of S. The coverage boundary
is the boundary of this coverage area. By definition it consists of arcs with radius
r and center points of S. When two points u, v of S have distance r to the same
point w the coverage boundary, we call this point a boundary point, see Fig. 4.
Now the following geometric observations can be made.

Lemma 1. 1. Given a point p of the coverage boundary, which is not a boundary
point, and the tangent T of the boundary, then the angle δ between (p, s) and
T is in the range δ ∈ [ 1

6π,
5
6π].

2. The length of the coverage boundary is at most 8πr.

Proof. The first statement comes from a simple geometric observation which is
based on possible placement of nodes ci, see Fig. 5.

For the second statement, note that each distance d traveled on the boundary
region corresponds to an angle difference of at least d

z
1

sin δ , where z is the distance
to s which is in the range [r, 2r]. The angle of the tangent is δ. Since 1

2 ≤ sin δ ≤ 1
and since the total angle difference is bounded by 2π, it follows that the maximum
length of the boundary is bounded by 8πr. ut

We neglect the case, where the coverage boundary intersects with the inner ring.
It is straight-forward that the following claims also hold for this case.



Using the observation of Lemma 1 we can order all cover points according to
their direction seen from s as c1, . . . , cm. Only neighbored nodes share a boundary
point. We name the angles according to Fig. 4. We denote bi as the boundary
point between ci and ci+1, and bm as the boundary node between c1 and cm. Let
αi = ∠cibici+1, βi = ∠bi−1cibi and γi = π − ∠ci−1cici+1.

c1

c2

b1

c3

s
c4 c5
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b6
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Fig. 4. Definition of coverage boundary,
boundary points b1, . . . , bm and cover nodes
S = {c1, . . . , cm} labeling

r
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s
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Fig. 5. Angle property of the boundary
region

From the definition of the angles we derive the following equalities for all
i ∈ [1,m]:

γi = βi −
αi + αi−1

2 , (2)
m∑
i=1

γi = 2π . (3)

Since the boundary region is defined by the arcs of angles α1, . . . , αn with radius
r now Lemma 1 implies

m∑
i=1

βi ≤ 8π .

So,
m∑
i=1

αi =
(

m∑
i=1

αi + γi

)
− 2π =

(
m∑
i=1

βi

)
− 2π ≤ 6π

While the cover points do not necessarily form a convex hull, its form is quite
well behaved. For a large number of cover points we need to find groups of near
points, i.e. with small angles αi and βi.



Lemma 2. Given m boundary points then, there exist at least k ≤ m interval
indices i1, . . . , ik such that for all ν ∈ {1, . . . k}:

iν+1−1∑
j=iν

αj ≤
12π
k

and
iν+1−1∑
j=iν+1

βj ≤
16π
k

Proof. Start with i1 = 1. Now for ν = 1, 2, . . . choose the largest q such that
q∑

j=iν

αj ≤
12π
k

and
q∑

j=iν+1
βj ≤

16π
k

and set iν+1 := q + 1.
By definition

iν+1∑
j=iν

αj >
12π
k

or
iν+1∑
j=iν

βj >
16π
k

One of this property must be violated more than k/2 times. This would imply

m∑
j=1

αj >
12π
k

k

2 = 6π or
iν+1∑
j=iν

βj >
16π
k

k

2 = 8π

which contradicts Lemma 1 ut

Lemma 3. For given boundary nodes c1, . . . , cm with
m∑
i=1

αi ≤
1
2
√
ε and

m∑
i=2

βi ≤
1
2
√
ε ,

the disks with center c1, . . . , cm with radius 1 − ε are covered by the two disks
with center c1 and cm with radius 1.

Proof. From Equation 2 we get for all ` ≤ m:∣∣∣∣∣∑̀
i=2

γi

∣∣∣∣∣ =

∣∣∣∣∣∑̀
i=2

βi −
1
2(α1 + α`)−

`−1∑
i=2

αi

∣∣∣∣∣ ≤
∣∣∣∣∣∑̀
i=2

βi −
∑̀
i=1

αi

∣∣∣∣∣ ≤ 1
2
√
ε .

Furthermore, we assume ε < 1 and use tan 1
2αi = |ci, ci+1|/2(1− ε) and

tan(x) ≤ 2x for x ∈ [0, 1].

|c1, cm| ≤
m−1∑
i=1
|ci, ci+1| ≤

m−1∑
i=1

2(1− ε) tan 1
2αi ≤

m−1∑
i=1

2(1− ε)αi ≤
√
ε

Since all sums
∣∣∣∑`

i=2 γi

∣∣∣ ≤ 1
2
√
ε and the maximum distance |c1, cm| ≤ 1

2
√
ε

we can conclude that c1, . . . , cm fits into a rectangle of length 1
2
√
ε and width 1

2ε.
The rest follows by the following geometric argument.
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Fig. 6. If the cover nodes are inside a
√
ε× 1

2 ε-rectangle, then two disks with radius 1
of the two outermost nodes cover all disks with radius 1− ε

The worst case placement for the outer nodes c1 and cm and some inner node
ci is depicted in Fig. 6. Note that(

1− 1
2ε
)2

+
(√

ε

4

)2

= 1− ε+ 1
16ε+ 1

4ε
2 = 1− 15

16ε+ 1
4ε

2 ≤ 1 .

Therefore the two outermost nodes with radius 1 always cover the disks with
radius 1− ε. ut

Putting all pieces together, given a start node s it wakes up all neighbor nodes.
They report their position and the algorithms chooses k =

⌈
32π√
ε

⌉
intervals

according to Lemma 2. From these k intervals surrounding s we start wake-up
calls only from the nodes at the interval borders, i.e. ci1 , . . . , cik . These nodes
can cover also the area covered by all cover nodes. So, we need k = O(ε−1/2)
wake-up calls to wake up all nodes in the two-hop (1− ε)-neighborhood. For a
grid size of 1√

2 (1− ε) this includes all points in the neighborhood of any given
point. Therefore, the cell based approach will inform at least the same node set
as the adversary.

Another implication from the (constant size) cell based approach is that if
we only count cells instead of nodes, there are straight-forward linear upper
and lower bounds for the number of wake-up calls. From this observation the
competitive ratio of O(ε−1/2) follows. ut

5.3 A position oblivious wake up algorithm

It seems natural and necessary that the positions of the nodes is used by the
wake up algorithms. There are a lot of reasons why the positions might not be
known. It is expensive and time-consuming to measure the coordinates and store
it on each sensor node. Some sensor nodes might have no persistent memory and



cannot store such information. And most important, since the communication
range is dependent to the environment it is not clear what the position means in
comparison to the unit disk range.

The following oblivious wake-up algorithms come into mind: Flooding, random
walk, and epidemic algorithms. While flooding reaches all nodes, it is the worst
with respect to energy. Random walks neither reduce the number of wake-up
signals nor does it give any delivery guarantees. Epidemic algorithms appear to be
the most reasonable solution. The question, however, is how to stop the epidemic
wake-up of nodes. We use a push-based epidemic rumor spreading algorithm
[12] which will be combined with a simple counter mechanism, which stops the
wake-up if k other wake-ups have been received.

However, it is possible to exploit some position information given by the
graph structure itself. The random k-covered wake-up of Figure 3 distinguish
between covered and uncovered nodes. A node is covered, if it has received two
wake-up signals. The algorithm starts with one node and picks in each round a
node which has not been covered twice.

This idea generalizes to the random k-covered wake-up algorithm, where
nodes continue to send until each node has been covered k + 1 times or has send
a wake-up signal.

Algorithm 3: Random k-covered wake-up
Input graph G = (V,E), start node s ∈ V
forall the u ∈ V do

counter(u)← 0
end
W ← {s}
Node s sends wake-up signal
forall the u ∈ V : {u, s} ∈ E do

counter(u)← counter(u) + 1
end
while ∃u ∈ V \W : 0 < counter(u) ≤ k do

Pick a random node w ∈ V \W with 0 < counter(u) ≤ k
W ←W ∪ {w}
Node w sends wake-up signal
forall the u ∈ V : {u,w} ∈ E do

counter(u)← counter(u) + 1
end

end

While we show in Section 5.3 that for k = 1 the algorithms performs very
well, the generalization is necessary since there are situations where the algorithm
fails from the start. In Fig. 7 such case is depicted. The node s wakes up four
nodes and the near-by node u continues. This node wakes up the same set of
nodes as s and so the algorithm stops, since all nodes are covered twice.



With the help of the position information this case could have been clearly
avoided. But even without it one could increase k. However, the factor k increases
the message complexity. So, a compromise between error rate and message
complexity needs to be made.

For the dense case, one can show that the error rate can be reduced to any
polynomial if the density is large enough and k is chosen to be logarithmic in n.

s u

Fig. 7. A Counter-Example for the
Random-k-Covered-Wake-Up

Theorem 3. If n nodes are place randomly in a m×m-grid with m ≤
√

n
c lnn for

some constant c. Then the Random O(logn) covered wake-up algorithm computes
a CDS with a competitive ratio of O(logn) high probability, i.e. 1−n−c for some
c ≥ 1.

Proof. The expected number of nodes in each cell is n
m2 ≥ c lnn. Using Chernoff

bounds it is possible to prove that this amount is in the range [ 1
2
n
m2 , 2 n

m2 ] with
high probability. The expected number of nodes in the communication range is
upper bounded by 5π n

m2 since the cell length is 1√
5 . Again Chernoff bound can

provide with high probability that the number of nodes reachable in one hop is
at most 10π n

m2 with high probability.
So, the probability that a node of a neighbor cell is activated is at least 1

10π .
Therefore, if each node is randomly activated until 10(c+ 1) lnn wake up calls
have been reached, this results in a probability of 1− n−c that each cell starts at
least one wake-up call, when a neighbor cell has been activated before. ut

6 Simulations

We have simulated the epidemic random k-covered algorithms to evaluate the
efficency of the covered nodes and the wake-up signals needed from the source
node to reach every single node in the area. The grid based flooding algorithm



and the competitive algorithm (with (1− ε) unit disk graphs) have high constant
factors involved such that they clearly cannot compete.

We randomly deployed varying number of nodes in a square area of 100m
edge length. The middle node is woken up first and the wake-up communication
range is limited to 10m based on real-world data. Fig. 8 and 9 show how the
CDS is constructed in a network with 1,000 randomly deployed nodes using the
random 1-covered, resp. 2-covered, wake-up algorithm.
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Fig. 8. Random-1-Covered-Wake-Up
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Fig. 9. Random-2-Covered-Wake-Up

Starting with a source node at a position (50, 50), the algorithm randomly
picks the next node to be woken in order to cover the rest of the nodes that
are found in the area. The nodes transmitting wake-up signal form a tree from
the source node to each covered nodes. Only edges where a new wake-up call is
initiated are depicted. In case of k = 1, a node is considered to be covered when
it is covered by two wake-up signals or if it transmits one. When the algorithm
considers k > 1 then a possible intersection in the tree can be formed as it
appears in Fig. 9.

The quality of the algorithms are measured according to their coverage, i.e. the
ratio of uncovered nodes after the algorithm has terminated, and the complexity,
i.e. the number of wake-up calls sent. We have simulated this for the above
parameters for increasing density. For this, we increase the number of nodes from
1 to 2, 000.

Fig. 10 shows that for k = 1 the ratio of uncovered nodes is relatively high
compared to the set of nodes which can be reached, this percentage is displayed
as the result of the flooding algorithm. Increasing k ameliorates this behavior.
For high node density all algorithms reach nearly a full coverage. For k = 1 a
coverage of 95% happens when 350 nodes are participating, for k ≥ 2 this already
happens for 250 nodes.

Fig. 11 indicates that the message complexity grows linearly with k and
converges for increasing node density. Surprisingly, the complexity increases from
k = 1 to k = 2 only by around 40%. So, k = 2 appears to be a good compromise
between coverage and complexity.
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Fig. 10. Uncovered Node Ratio
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n nodes

7 Conclusions and Future Work

The improved efficiency of wake-up receivers down to the microwatt range
implies a paradigm shift for wireless sensor networks. Now, no busy idling
implemented as duty-cycling is necessary until the first sensor information or the
first message arrives. However, when the nodes need to be woken up without
any prior knowledge we face the wake-up connected dominating set problem,
presented here.

For this problem, we provide theoretical and practical solutions. Our algo-
rithms work for random placement and an adversarial setting, where we needed
to reduce the power of the adversary, otherwise no efficient algorithms can be
found. It turns out that for the random placement the position information is
not necessary to find an efficient algorithm with a O(logn)-competitive ratio. We
have simulated a simplified variant of this and have seen that it reaches nearly
all nodes with small number of wake-up calls.

This raises the hope that duty-cycling might soon be a technique of the past.
However, with the available transceiver technology a wake-up call is orders of
magnitudes more energy-consuming than standard operation. Taking this into
account, it does not make sense to wake up the network from scratch every
time a sensor reading appears. At this moment, it is more efficient to put the
full network into sleep after some thousand communication cycles. So with the
current hardware, a hybrid solution of wake-up calls and duty-cycling is the
optimal solution.

Another available technique is the use of IDs for wake-up calls. It is possible
to program sensor nodes to be woken up only on a special signal, which are
given by a programmable ID. This may help protocols to build up a wake-up
infrastructure, where the wake-up signals may trigger different nodes or paths.
At this point, it is not clear how this feature can be used in future protocols and
what can be achieved with it.



Since, the wake-up transceiver have only become available recently, we are in
the process of implementing the given protocols and further research will show,
how well these wake-up algorithms behave in real world.
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